Antitumoral and antioxidant effects of a hydroalcoholic extract of cat’s claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model

Arturo Alejandro Dreifussa, Amanda Leite Bastos-Pereirab, Thiago Vinicius Ávilab, Bruna da Silva Soleyb, Armando J. Riveroc, José Luis Aguilara, Alexandra Accob,∗

a Immunology Laboratory, Cayetano Heredia Peruvian University, Lima, Peru
b Department of Pharmacology, Federal University of Paraná, Curitiba, Paraná, Brazil
c Pharmaceutical Technology Department, National University of San Marcos, Lima, Peru

A R T I C L E I N F O

Article history:
Received 23 January 2010
Received in revised form 5 April 2010
Accepted 20 April 2010
Available online 6 May 2010

Keywords:
Uncaria tomentosa
Cat’s claw
Walker-256
ROS
Oxidative stress
Tumor
Urea

A B S T R A C T

Aim of the study: The present work intended to study the antitumoral and antioxidant effects of Uncaria tomentosa (UT) hydroalcoholic extract in the Walker-256 cancer model.

Methods and materials: Walker-256 cells were subcutaneously inoculated in the pelvic limb of male Wistar rats. Daily gavage with UT extract (10, 50 or 100 mg kg−1, Groups UT) or saline solution (Control, Group C) was subsequently initiated, until 14 days afterwards. For some parameters, a group of healthy rats (Baseline, Group B) was added. At the end of treatment the following parameters were evaluated: (a) tumor volume and mass; (b) plasmatic concentration of urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT) and lactate dehydrogenase (LDH); (c) hepatic and tumoral activity of catalase (CAT) and superoxide dismutase (SOD), as well as the rate of lipid peroxidation (LPO) and glutathione (GSH); and (d) hepatic glutathione-S-transferase (GST) activity. The reactivity of UT extract with the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) was assessed in parallel.

Results: UT hydroalcoholic extract successfully reduced the tumor growth. In addition, treatment with UT reduced the activity of AST, which had been increased as a result of tumor inoculation, thus attempting to return it to normal levels. UT did not reverse the increase of LDH and GGT plasma levels, although all doses were remarkably effective in reducing urea plasma levels. An important in vitro free radical-scavenging activity was detected at various concentrations of UT extract (1–300 µg mL−1). Treatment also resulted in increased CAT activity in liver, while decreasing it in tumor tissue. SOD activity was reduced in liver as well as in tumor, compared to Group C. No statistical significance concerning ALT, GST, LPO or GSH were observed.

Conclusions: This data represent an in vivo demonstration of both antitumoral and antioxidant effects of UT hydroalcoholic extract. The antineoplastic activity may result, partially at least, from the ability of UT to regulate redox and metabolism homeostasis.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Uncaria tomentosa (UT) is a vine that has been used for centuries by many indigenous tribes of South America for a wide range of affections. Its use has been proposed for a broad array of diseases such as arthritis, gastric ulcers, rheumatism, various infections and cancer (Cerri et al., 1988; Aquino et al., 1991; Rizzi et al., 1993; Wurm et al., 1998; Lemaire et al., 1999).

The pharmacological properties of UT have been most studied in inflammatory processes. Extracts from the bark and the root of UT have been proved successful in inhibiting nitrite as well as TNFα production (Sandoval et al., 2002). The immunomodulant properties of UT were also related to its ability of suppress TNFα synthesis (Sandoval et al., 2000). Another study using the carrageenan-induced paw edema model in mice to compare the anti-inflammatory activity of a hydroalcoholic and an aqueous extract of UT concluded that the former has a greater favorable activity (Aguilar et al., 2002). Conversely, an interesting sup-

0378-8741/$ – see front matter © 2010 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.jep.2010.04.029
pression of the transcription pathway mediated by NF-κB was also observed with both extracts. Other reports suggest that the anti-inflammatory properties of UT may be related to a synergic combination of compounds (Rizzi et al., 1993; Reinhard, 1997).

Beside the discovery of UT effects in inflammatory and immune scenarios, there is recent interest in its effects in neoplastic processes, although to this point most of the studies have been based on tumor cell lines in vitro. Indeed, it has been observed that some aqueous extracts of UT significantly inhibited the proliferation of HL60 human leukemia cells (Sheng et al., 1998). Other study observed enhanced DNA repair activity (Sheng et al., 2001). The first demonstration of the potentially beneficial effects of UT on solid tumors was performed by Riva et al. (2001) using bark extracts and fractions of the plant on the MCF7 breast cancer lineage. Their data suggest that in addition to demonstrating antimutagenic properties, UT had a direct antiproliferative activity against neoplastic cells. More recently, a UT component called mitraphylline demonstrated in vitro antitumoral activity against cellular lines of human neuroblastoma and glioma (Garcia Prado et al., 2007).

Despite these results, until now there are only few studies applying UT in in vivo tumor models (Caballero et al., 2005; Fazio et al., 2008). Moreover, little attention has been given to the association between the aforementioned antineoplastic effects and its previously observed antioxidant properties (Sandoval et al., 2002; Pilarski et al., 2006). In face of the promising potential of UT for the adjuvant management of neoplastic diseases, this investigation attempted to evaluate the joint antiproliferative and antioxidant activity of an UT hydroalcoholic extract in the Walker-256 (W-256) cancer model, which is a murine carcinosarcoma that has been considered an appropriate model for studies concerned to solid tumors, oncologic pain, metastasis and cancer-related cachexia (De Almeida Salles Perroud et al., 2006; Brigatte et al., 2007).

2. Materials and methods

2.1. Plant material and extraction procedure

All plant material was kindly provided specifically for this study by Peruvian Heritage S.A.C. It consisted on a hydroalcoholic extract of the bark of Uncaria tomentosa prepared by decoction using ethanol and water in the proportion of 70:30 for 1 h at 20 °C, and subsequently dried by atomization, resulting in a powder extract. The total alkaloid content was of 5.03%.

To further ascertain the quality of the extract, we determined its oxindole alkaloids content by means of high performance liquid chromatography (HPLC) techniques according to Laus and Keplinger (1994). Detection was at 245 nm, with measurement of the absorbance ratio to that at 230 or 260 nm, peak isolation by semi-preparative chromatography used for quantification. The pentacyclic were found the most significant concentration of alkaloids in the extract.

2.2. Animals

Male Wistar rats (200–300 g) were obtained from the Central Animal House of the Federal University of Paraná (Curitiba, Brazil). Animals were housed at 22 ± 1 °C under a 12-h light–dark cycle, and had free access to standard laboratory food (Purina®) and tap water. No other experiments were conducted in these animals prior to those of the current research. All experimental protocols using animals were performed following the recommendations of Brazilian Law 6638, 05/11/1979 for the scientific management of animals and the “Principles of Laboratory Animal Care” (NIH Publication 85-23, revised in 1985). Both Institutional Animal Ethics Committee of Federal University of Paraná and of Cayetano Heredia Peruvian University revised and approved all procedures of this study, under certificate numbers 324 and 53973, respectively.

2.3. Tumor cells

Walker-256 tumor cells were kindly donated by Prof. Dr. Luiz Cláudio Fernandes from the Physiology Department of the Federal University of Paraná. The maintenance of Walker-256 cells (W-256) was carried out by weekly passages through intraperitoneal (IP) inoculation according to Vicentino et al. (2002). After 5–7 days of growth in ascitic fluid, the liquid collected was centrifuged for 10 min at 1126 × g at 4 °C. The supernatant was discarded, and the precipitate suspended in 1.0 mL of PBS buffer (16.5 mM phosphate, 137 mM NaCl and 2.7 mM KCl). The viability of tumor cells was assessed by the Trypan blue-exclusion method in a Neubauer chamber. Finally, approximately 10^7 W-256 cells were injected subcutaneously in the right pelvic limb of each animal.

2.4. Experimental design

The treatment began 1 day after tumor cell inoculation, and continued for 14 days. The hydroalcoholic dried extract of Uncaria tomentosa was dissolved daily in distilled water and administered by gavage in doses of 10, 50 or 100 mg kg⁻¹ (Group UT, n=9). Animals of the control group (Group C, n=9) received a similar volume of distilled water. For some parameters, another group called baseline (Group B, n=5) was added, which was composed of individuals not inoculated with tumor, but treated with saline solution. After 14 days of treatment, all animals were anesthetized with ketamine (Dopalen®, Vetbrands, Paulínia), in a dose of 60 mg kg⁻¹, and xylazine (Anasedan®, Vetbrands, Paulínia), in a dose of 7.5 mg kg⁻¹; and blood samples from the inferior cava vein were obtained for biochemical assays. Subsequently, animals underwent euthanasia by diaphragm puncture. All tumors were removed and weighted in an analytical balance. The tumor volume was calculated by means of the measure of its diameters, according to Mizuno et al. (1999). After these determinations, tumor and liver samples of each animal were stored at −70 °C for further analyses.

2.5. Blood biochemical assays

Serum samples were collected after blood centrifugation at 3000 × g for 10 min. These samples were used for determination of plasmatic urea, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT) and lactate dehydrogenase (LDH) by means of commercial kits (Labtest Diagnostica, Lagoa Santa, Brazil).

2.6. Oxidative stress parameters

2.6.1. In vitro free radical-scavenging activity

The reactivity of the UT hydroalcoholic extract (concentrations of 1–300 μg mL⁻¹) with the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) was assessed through an adaptation in the method of Chen et al. (1999). The system consisted of 750 μL of test solution (UT extract) and 250 μL of a methanolic solution of DPPH (1 mg 25 mL⁻¹). After 5 min, the decrease in absorbance was measured. A solution of the reducing agent ascorbic acid (50 μg mL⁻¹) was used as positive control and distilled water was used as negative control.

2.6.2. Determination of catalase, superoxide dismutase and glutathione-S-transferase activities

For the biochemical analyses of these enzymes, liver and tumor samples were homogenized in phosphate buffer pH 6.5. Catalase
hoc carcinosarcoma. The animals were treated as described in Section 2.4. Data are expressed as mean ± standard error of mean and were analyzed by one-way ANOVA and post hoc Neumann–Keuls. Abbreviation: p.o. = per os. *p < 0.05 compared with control group.

(CAT) activity was measured according to Aebi (1984). The reaction was monitored at 240 nm in spectrophotometer for 60 and 90 s for liver and tumor samples, respectively. Superoxide dismutase (SOD) activity was measured in both tissues by the ability of this enzyme to inhibit pyrogallol auto-oxidation, in microplate at 440 nm (Gao et al., 1998). The amount of enzyme that inhibited the reaction by 50% (IC50) was defined as one unit of SOD, and the enzyme activity was expressed in units of SOD per milligram of total protein (USOD mg protein−1). The activity of glutathione-S-transferase (GST) in liver was measured following the method of Habig et al. (1974) using a microplate reader, which assessed the linear increase in molar extinction at 340 nm.

2.6.3. Determination of reduced glutathione levels

Reduced glutathione (GSH) levels were measured by the method described by Sedlak and Lindsay (1968). Tumor and liver tissue were diluted in phosphate buffer 0.1 M (pH 6.5) in the proportion of 1:10. Subsequently, 250 μL of the homogenate were mixed with trichloroacetic acid (200 μL of 12.5% purity) and kept in ice for 30 min thus allowing protein precipitation. The supernatant was separated by centrifugation at 13,750 × g for 10 min at 4 °C. Then, 30 μL of the clear supernatant was mixed with 270 μL of phosphate buffer 0.1 M (pH 8.5) and 5 μL of 5,5′-dithiobis-(2-nitrobenzoic acid) in methanol. The absorbance of the reaction solution was measured at 415 nm in a microplate reader, using reduced glutathione as external standard.

2.6.4. Determination of lipid peroxidation rate

Lipid peroxidation (LPO) rate was measured by the FOX-2 method (Jiang et al., 1991). This technique determines lipid hydroperoxide synthesis during peroxidation. Tumor and liver samples were homogenized in methanol (1:5 ratios) at 25,000 rpm min−1, and then centrifuged at 5000 × g for 5 min at 4 °C. The absorbance of the supernatant was measured at 560 nm in a spectrophotometer model Ultrospec 4300 pro. The results were expressed in nmol mg protein−1.

2.6.5. Quantification of proteins

The quantification of proteins in liver and tumor samples was performed according to the Bradford method (1976). The reaction was accomplished at 595 nm in a microplate reader, using bovine serum albumin (BSA) as protein standard.

2.7. Statistical analysis

Statistical analyses were performed using one-way analysis of variance (ANOVA) with post hoc Neumann–Keuls multiple range testing in the Graph Pad Prism program version 4.0. Differences were considered significant when p ≤ 0.05.

3. Results

3.1. Tumor mass and volume

Fourteen days after the inoculation of W-256 cells, the tumor mass of the control group was 20 ± 4.70 g. Treatment with all doses of UT extract notably reduced the tumor mass, as shown in Fig. 1A. Considering that tissue mass can vary because of the water contents, the volume of tumors were as well evaluated. The tumor volume of the control group was 46 ± 8 cm³. Compared to control group, the tumor volume reduced 46%, 58% and 64% at doses of 10, 50 and 100 mg kg−1 of UT extract, respectively (Fig. 1B), thus showing a dose-dependent effect. Animals had their body weight monitored during the entire treatment period. However, no statistic significance between the groups was observed.

3.2. Plasmatic levels of urea and hepatic markers

Considering the liver as the main organ responsible for the metabolism of xenobiotics, such as UT extract, and for the oxidative stress homeostasis, hepatic function was evaluated accessing plasmatic levels of the liver enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT) and lactate dehydrogenase (LDH). Also plasma urea concentration was measured as a marker for kidneys function and ureagenesis, once this metabolic process takes place in hepatocytes. Basal plasma levels for these parameters were considered as those obtained in the baseline group (Group B) and were compared with distilled water and UT-treated groups. These results are shown in Table 1.

Animals of the control group presented enhanced levels of all plasma enzymes when compared to baseline condition. These increases were represented by about 50% for LDH, 533% for GGT, 62% for ALT and 163% for AST. These data indicate that some of the hepatic functions are modified by the presence of W-256 tumor. Regarding these parameters in treated rats, the most prominent effect of UT was in AST. All three tested doses of UT reduced by about 14% the plasma levels of AST. However, these levels still remained 127% higher than those found in baseline group. In contrast, ALT levels did not show significant changes between control and UT groups. Despite lacking statistic significance, it should be stressed that LDH levels from the group treated with 100 mg kg−1 of UT reduced about 30% when compared to control group. Nevertheless, these levels were 15% higher than Group B. Interestingly, GGT was the enzyme that presented the highest elevation in all tumor-bearing rats. GGT levels in UT-treated rats were higher than those presented by control group, reaching ~600% of increasing compared to basal levels.
Treatment with *Uncaria tomentosa* showed a remarkable reduction in urea plasma levels in order of 89%, 82% and 70% for the groups treated with 10, 50 and 100 mg kg\(^{-1}\) of UT extract, respectively (Table 1). Interestingly, the influence of UT in reducing plasma urea concentration demonstrated an inverse dose-dependent effect.

3.3. Assessment of the ability of Uncaria tomentosa to scavenge the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH)

Due to previous studies have demonstrated the antioxidant properties of *Uncaria tomentosa*, we decided to evaluate the *in vitro* scavenging activity of DPPH by several concentrations of our extract. A statistically significant reduction of the absorbance was obtained compared to the negative control (water) as well as our extract. A statistically significant reduction of the absorbance was observed at the lowest UT concentration (10 mg kg\(^{-1}\)), while the lower (10 mg kg\(^{-1}\)) and intermediate (50 mg kg\(^{-1}\)) doses did not succeed in achieving any statistically significant reduction in the activity of this enzyme.

3.4. Evaluation of oxidative stress in liver and tumor tissue

Considering the observation of an expressive *in vitro* antioxidant action of UT extract (Section 3.3), we deemed appropriate to measure *in vivo* oxidative stress parameters. Catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST) were measured in liver and/or tumor tissues. Additionally, the rate of lipid peroxidation (LPO) and reduced glutathione (GSH) were as well assessed on both tissues.

3.4.1. Oxidative stress parameters in liver tissue

The presence of W-256 tumor induced significant changes in all of hepatic enzymes related to oxidative stress. In the control group the mean activity of CAT was reduced by 79%, SOD increased by 252% and GST decreased by 59% when compared to baseline group, as shown in Table 2. On the other hand, the treatment with UT successfully normalized the activities of these enzymes. Regarding to CAT and GST, all tested doses of UT extract significantly increased its activities, drawing both enzymes to similar levels of those found in baseline condition. It should be stressed, however, that the activity of hepatic SOD was normalized only by the highest dose of UT extract (100 mg kg\(^{-1}\)), while the lower (10 mg kg\(^{-1}\)) and intermediate (50 mg kg\(^{-1}\)) doses did not succeed in achieving any statistically significant reduction in the activity of this enzyme.

3.4.2. Oxidative stress parameters in tumor tissue

The assays of CAT demonstrated that this enzyme has lower activity in tumor than in liver. The obtained values of CAT activity for the group treated with 10 mg kg\(^{-1}\) UT reached 291 ± 17.8 μmol min mg protein\(^{-1}\) in liver, but only 59.9 ± 5.2 μmol min mg protein\(^{-1}\) in tumor. Thus, in UT-treated rats, CAT activity was found to be 4.3-fold elevated in liver when compared with tumor tissue. Another important observation concerning CAT activity is that UT reduced its activity in tumor while remarkably enhancing it in liver, as compared to control group. Like so, activity of tumor SOD was significantly reduced in all groups treated with UT extract. In contrast, treatment with UT did not lead to any significant differences in reduced glutathione levels (GSH) and lipid peroxidation (LPO) rates on the tumor tissue. These results are shown in Table 3.

4. Discussion

Previous work on the antiproliferative potential of *Uncaria tomentosa* had been centered on *in vitro* testing of various extracts or even isolated compounds of the plant on neoplastic lineages, predominantly mammary, hematological and neurological (Sheng et al., 1998, 2001; Riva et al., 2001; Bacher et al., 2006; García Prado et al., 2007; Pilarski et al., 2006; García Giménez et al., 2010). The antitumoral action of UT extract shown by reduction of volume and mass of W-256 tumor in all tested doses (10, 50 and 100 mg kg\(^{-1}\)) constitutes the first observation of such effect on W-256, an *in vivo* solid rat tumor. These results corroborate pre-

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Groups</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH</td>
<td>175 ± 35.2</td>
<td>262.9 ± 49.5</td>
</tr>
<tr>
<td>GGT</td>
<td>1.5 ± 0.7</td>
<td>9.5 ± 0.9</td>
</tr>
<tr>
<td>ALT</td>
<td>55.5 ± 1.7</td>
<td>90.4 ± 4.3</td>
</tr>
<tr>
<td>AST</td>
<td>69.5 ± 1.6</td>
<td>183.3 ± 4.6</td>
</tr>
<tr>
<td>Urea</td>
<td>40.7 ± 12.3***</td>
<td>208.9 ± 47.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Animals were inoculated with W-256 cells and treated as described in Sections 2.3 and 2.4. Data are expressed as mean ± standard error of mean and were analyzed by one-way ANOVA and post hoc Neumann–Keuls. Abbreviations: LDH = lactate dehydrogenase; GGT = gamma-glutamyltransferase; ALT = alanine aminotransferase; AST = aspartate aminotransferase.

Fig. 2. Evaluation of scavenging activity of DPPH (2,2-diphenyl-1-picrylhydrazyl) by different concentrations of *Uncaria tomentosa* hydroalcoholic extract. Negative control was water; positive control was ascorbic acid (AA) 50 μg mL\(^{-1}\). Data are expressed as mean ± standard error of mean and were analyzed by one-way ANOVA and post hoc Neumann–Keuls. **p < 0.001 compared to control; ***p < 0.01 compared to AA.
vions of oxidative stress in the liver homogenate after 14 days of treatment in baseline, control, and *Uncaria tomentosa* (10, 50 and 100 mg kg\(^{-1}\)) groups of rats bearing the Walker-256 tumor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline</th>
<th>Control</th>
<th>Uncaria tomentosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 mg kg(^{-1})</td>
</tr>
<tr>
<td>CAT</td>
<td>392.7 ± 50.1(^1)</td>
<td>82.5 ± 22.9</td>
<td>291 ± 17.8</td>
</tr>
<tr>
<td>SOD</td>
<td>1.9 ± 0.2</td>
<td>6.7 ± 0.9</td>
<td>6.7 ± 1.3</td>
</tr>
<tr>
<td>GST</td>
<td>607.5 ± 29.5(^#)</td>
<td>248.9 ± 54.4</td>
<td>732 ± 119.2</td>
</tr>
<tr>
<td>GSH</td>
<td>589.3 ± 76.1</td>
<td>397.3 ± 65.3</td>
<td>495.1 ± 44.1</td>
</tr>
<tr>
<td>LPO</td>
<td>1.5 ± 0.7</td>
<td>5.6 ± 0.6(^*)</td>
<td>6.9 ± 0.9(^*)</td>
</tr>
</tbody>
</table>

Animals were inoculated with W-256 cells and treated as described in Sections 2.3 and 2.4. Data are expressed as mean ± standard error of mean and were analyzed by one-way ANOVA and post hoc Neumann–Keuls. Abbreviations: CAT = catalase; SOD = superoxide dismutase; GST = glutathione-S-transferase; GSH = reduced glutathione; LPO = lipoperoxidation.

\(^1\) p < 0.05 comparing with control group.

\(^\#\) p < 0.05 comparing with baseline group.

Of the liver as an antioxidant organ in systemic oxidative states like that induced by the presence of W-256 tumor. Moreover, we report a significant diminished CAT activity in tumor tissue as a result of UT treatment at the dose of 100 mg kg\(^{-1}\). Tumor cells that exhibit high CAT activity are resistant against ROS-induced apoptosis, and it has been observed that the inhibition of this enzyme resensitizes such malignant cells (Sandstrom and Buttke, 1993; Tome et al., 2001; Von Eynatten and Bauer, 2001; Moran et al., 2002; Vandenabeele et al., 2006; Fang et al., 2007; Bechel and Bauer, 2009). Therefore, the CAT inhibition in tumor cells that we observed is indeed a highly favorable result, which indicate that W-256 cells are sensitive to ROS-induced apoptosis.

As well as CAT, the activity of hepatic GST is reduced by W-256 but is induced by UT treatment. Interestingly, despite the fact that this enzyme has been involved in xenobiotics and carcinogens metabolism through glutathione (GSH) conjugation reaction (DeWeese et al., 2001), the tumor and hepatic levels of GSH did not suffer any significant alteration with the UT treatment. In this sense, GSH and LPO, both parameters that were not modified by treatment, may not be targets for the action of UT in W-256. One more data that reinforces that observation is the absence of differences between control and UT-treated groups regarding to GGT plasmatic level. GGT is intimately concerned in the synthesis and metabolism of GSH through the gamma-glutamyl cycle (Goldberg, 1980).

All of the above mentioned parameters play important roles in the redox homeostasis, and the maintenance of their regular level can be useful in various diseases, such as cancer. Despite the ineffectiveness of UT extract in regulating GSH and LPO level, it may be suggested that UT extract is interesting as an adjuvant in the treatment of solid tumors. The fundamento of this statement occurs, partially at least, because of its action upon enzymes that regulate oxidative stress. It is well known that the interference in some
redox processes and ROS metabolism are a possible way of achieving apoptosis in neoplastic cells (De Martino et al., 2006; Cheng et al., 2007).

The presence of W-256 tumor increased plasmatic level of hepatic enzymes in comparison with baseline group. The values of enzymes found in baseline condition are in concordance with the reference ones for rats (Kaneko, 1989; Petterino and Argentino-Storino, 2006). Elevated plasmatic levels of GGT, ALT and AST in control rats indicate that hepatic functions are modified by W-256 tumor. Increased plasma levels of both ALT and AST are generally regarded as important indicators of cellular hepatic lesions (Peichoto et al., 2006), once alterations in hepatocyte function or membrane permeability can result in enzyme extravasation to plasma. However, UT treatment was able to reduce significantly AST plasmatic level. Considering that AST has cytosolic location in hepatocytes (Jagadeesan and Kavitha, 2006), our data indicate that UT extract protected at least partially the hepatocytes, resulting in reduced plasmatic AST. Similar results regarding plasmatic AST and ALT in rats bearing W-256 were recently reported after treatment with extracts of Agaricus brasiliensis mushroom, which also has an antioxidant activity (Jumes et al., 2010). It is worthy of mention that when administered to human patients with osteoarthritis, cat’s claw had no deleterious effects on liver function parameters (Piscoya et al., 2001).

Plasmatic levels of GGT were found extremely high in control rats. These findings are not surprising in view of several publications reporting that tumor progression and appearance of more aggressive phenotypes are related with GGT role or deregulated expression of this transferase (Hanigan et al., 1999; Maellaro et al., 2000; Pompella et al., 2006; Corti et al., 2009). Prospective studies showed that elevated GGT is associated with mortality from liver disease, cancer or diabetes (Ruhl and Everhart, 2009), and also with chronic kidney disease (Targher et al., 2009). The measurement of urinary GGT is more adequate for detection of kidney damage (Braun et al., 1983), while the plasma values can indicate disturbances of excretory liver function (Nemesánzky and Lott, 1985). In this case, despite lacking reduction of plasmatic GGT by UT treatment in rats bearing W-256, the level of plasmatic urea was remarkably reduced by UT extracts. Plasmatic urea returned to baseline levels with all UT tested doses. These results may indicate that (a) liver ureagenesis was normalized and/or (b) that excretory kidney function was preserved by UT treatment. These are important statements considering that the hepatic metabolism seems to be particularly affected in tumor-bearing animals (Acco et al., 2007). For instance, W-256 tumor reduces ureagenesis from alanine in isolated perfused liver. Ureagenesis from exogenously supplied ammonia is also reduced by this tumor unless aspartate is the exogenous carbon source, but urea production from arginine is substantially increased, suggesting also increased polyamine synthesis (Corbello-Pereira et al., 2004). Plasmatic urea levels of tumor-bearing rats treated with UT were similar to that from baseline group (40.7 ± 12.3 mg dL⁻¹). For example, the UT intermediary dose (50 mg kg⁻¹) provoked ~82% of reduction in urea plasmatic level (37.5 ± 6.9 mg dL⁻¹) in comparison with control rats (208.9 ± 47.9 mg dL⁻¹). These data are compatible with the reduction of plasma AST, indicating that the hepatocytes integrity and maintenance of intracellular AST could reflect in normalization of urea production. This is relevant at least when aspartate is the substrate, because the availability of this aminoacid seems to be critical for ureagenesis in the liver of tumor-bearing rats, which is possibly unable to produce aspartate in sufficient amounts from endogenous sources (Corbello-Pereira et al., 2004). These results demonstrate that UT can also act controlling some important hepatic metabolic pathway, such as ureagenesis, in tumor-bearing rats.

5. Conclusions

The present work demonstrates a relevant antineoplastic effect of an UT hydroalcoholic extract on W-256, an in vivo solid tumor model. Furthermore, this effect is related with its antioxidant properties via ROS-regulating mechanisms and metabolism homeostasis, probably among the concomitant action of several other mechanisms. Our data indicates that the combined antineoplastic and antioxidant actions of UT are indeed promising for its application in neoplastic diseases, especially in solid tumors.

Acknowledgments

The authors would like to express their gratitude to Prof. Dr. Helena Cristina da Silva de Assis and Prof. Dr. Maria Consuelo de Andrade Marques for supporting some laboratorial materials and equipments used in the presented experiments.

References

García Prado, E., García Gimenez, M.D., De la Puerta Vázquez, R., Espartero Sánchez,
García Giménez, D., García Prado, E., Sáenz Rodríguez, T., Fernández Arche, A., De
Gao, R., Yuan, Z., Zhao, Z., Gao, X., 1998. Mechanism of pyrogallol autoxidation and
mizuno, M, Minato, K., Ito, H., Kawade, M., Terai, H., Tshuchida, H., 1999. Anti-
Maellaro, E., Dominici, S., Del Bello, B., Valentini, M.A., Pieri, L., Perego, P., Supino,
Laus, G., Keplinger, D., 1994. Separation of stereoisomeric oxindole alkaloids from
García Giménez, D., García Prado, E., Sáenz Rodríguez, M.T., 2007. Antiproliferative effects of mitraphylline, a
breast cancer cell lines. Planta Medica 76, 133–136.
J.L., Sáenz Rodríguez, M.T., 2007. Antiproliferative effects of mitraphylline, a
Laus, G., Keplinger, D., 1994. Separation of stereoisomeric oxindole alkaloids from
García Prado, E., García Gimenez, M.D., De la Puerta Vázquez, R., Esperato Sánchez,
Garcíá, D., Sánchez Rodríguez, M.T., 2007. Antiproliferative effects of mitraphylline, a
pentacyclic oxindole alkaloid of Uncaria tomentosa on human glioma and neu-
roblastoma cell lines. Phytomedicine: International Journal of Phytotherapy and
Phytopharmacology 14, 280–284.
Goldberg, D.M., 1980. Structural, functional, and clinical aspects of gamma-
Skulachev, V.P., 2000. Mitochondria in the programmed death phenomena; a
and antioxidants in oxidative stress-induced cancer. Chemico-Biological Inter-
relationships and mechanisms of action of the species
Uncaria tomentosa extracts and fractions
on the growth of breast cancer cell line. Anticancer Research 21, 2457–2461.
Mutagenic and antimutagenic activities of Uncaria tomentosa and its extracts.
Ruhl, C.E., Everhart, J.E., 2009. Elevated serum alanine aminotransferase and
gamma-glutamyltranspeptidase and mortality in the United States population. Gas-
troenterology 136, 477–485.
Sandoval, M., Charbonnet, R.M., Okuhama, N.N., Roberts, J., Krenova, Z., Trentacosti,
A.M., Miller, M.J., 2000. Cat’s claw inhibits TNF-α production and scaven-
ges free radicals: role in cytoprotection. Free Radical Biology and Medicine
30, 90–131.
Sandoval, M., Okuhama, N.N., Zhang, X.J., Condezo, L.A., Lao, J., Angeles, F.M., Musah,
ities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine 9, 325–337.
prevents apoptosis of the human CEM T-cell line in serum-free medium. Pro-
ceedings of the National Academy of Sciences of the United States of America
90, 4708–4712.
Sedlak, J., Lindsay, R.H., 1968. Estimation of total, protein-bound, and nonprotein
Sheng, Y., Li, L., Holmgren, K., Pero, R.W., 2001. DNA repair enhancement of aque-
Skulachev, V.P., 2000. Mitochondria in the programmed death phenomena; a
principle of biology: “it is better to die than to be wrong”. IUBMB Life 49, 365–373.
gamma-glutamyltranspeptidase and chronic kidney disease in the United States adult population. In: Findings from the National Health and Nutrition Exam-
overexpressing thymus stromal lymphopoietic cells resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Research 61, 2766–2773.
actions 140, 1–40.
alternative cell death pathways. Science’s STKE: Signal Transduction Knowledge Network 358, 44.
Vicentino, C., Constantino, J., Aparecido Stecanella, L., Bracht, A., Yamamoto, N.S.,
2002. Glucose and glycyogen catabolism in perfused livers of Walker-256 tumor-
bearing rats and the response to hormones. Pathophysiology 9, 175–182.
during intercellular induction of apoptosis. International Journal of Oncology
18, 1169–1174.
alkaloids from Uncaria tomentosa induce human endothelial cells to release a
lymphocyte-proliferation-regulating factor. Planta Medica 64, 701–704.