Comparative Effects of Stevia rebaudiana Leaves and Stevioside on Glycaemia and Hepatic Gluconeogenesis

Article in Planta Medica - June 2006

CITATIONS: 37
READS: 580

6 authors, including:

Francisco A R Neves
University of Brasilia
103 PUBLICATIONS 1,197 CITATIONS

Wilson Alves-Do-Prado
Universidade Estadual de Maringá
34 PUBLICATIONS 353 CITATIONS

Roberto Bazotte
Universidade Estadual de Maringá
149 PUBLICATIONS 1,973 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Preclinical 'herb-drug interactions' profile of European and Latinoamerican Medicinal Plants View project
- Mechanism of positive modulation of the glucocorticoid prednisolone on neurotransmission View project
Comparative Effects of Stevia rebaudiana Leaves and Stevioside on Glycaemia and Hepatic Gluconeogenesis

Abstract

The purpose of the present study was to compare the effect the oral treatment (gavage) with Stevia rebaudiana (Bert.) Bertoni (SRB) and stevioside (STV) on glycaemia and gluconeogenesis of 15-h fasted rats. For this purpose, the rats received SRB (20 mg/kg x day), STV (5.5 mg/kg x day) or an equal volume of water (controls) during 15 days. To measure hepatic gluconeogenesis, liver perfusion and isolated hepatocytes were used. Glycaemia and gluconeogenesis from L-alanine (5 mM), L-glutamine (5 mM) and L-lactate (2 mM) were decreased (P < 0.05) after pre-treatment with SRB. However, the treatment with STV did not influence glycaemia and gluconeogenesis. Moreover, to get further information about the mechanism by which SRB leaves inhibit gluconeogenesis their potential role as PPARγ agonist was investigated. The data showed absence of activation of PPARγ receptors. In summary, our results showed that the reduction of glycaemia promoted by the treatment with SRB leaves was mediated, at least in part, by an inhibition of hepatic gluconeogenesis. However, this effect did not involve stevioside and the activation of PPARγ receptors.

Key words

Stevia rebaudiana (Bert.) Bertoni · stevioside · gluconeogenesis · glycaemia · PPARγ agonist

Supporting information available online at http://www.thieme-connect.de/ejournals/toc/plantamedica

Introduction

Native to north-eastern Paraguay and southern Brazil, the leaves of Stevia rebaudiana (Bert.) Bertoni (SRB) have been used by the Guaraní Indians to treat diabetes and this popular knowledge have been passed on by oral tradition for many centuries.

This empirical knowledge led researchers to study the antidiabetic properties of this plant. The reports about the influence of SRB upon diabetes started with Oviedo et al. [1], who first demonstrated the hypoglycaemic effect of SRB leaves. From this study, several publications, including our previous investigations in rats [2] and human [3] confirmed that the treatment with SRB leaves could reduce fasting glycaemia.

Several reports [4], [5], [6], [7], [8], [9] suggest that the effect of SRB leaves on glycaemia could be mediated, at least in part, by the main sweet component, i.e., stevioside (STV). However, the hypoglycaemic effect of oral STV is still controversial, because STV is degraded by the intestinal microflora of rats [10], pigs [11] and human [10] to the diterpenoid aglycone steviol. However, the presence of steviol in the blood after oral ingestion of stevioside was not confirmed [12].

Affiliation

1 Department of Pharmacy and Pharmacology, State University of Maringá, Maringá-PR, Brazil
2 Department of Molecular Pharmacology, University of Brasília, Brasilia, Brazil

Correspondence

Roberto B. Bazotte · Department of Pharmacy and Pharmacology · State University of Maringá · Avenida Colombo 5790 · 87020-900 Maringá · PR · Brazil · Phone/Fax: +55-44-3261-4999 · E-mail: rbbazotte@uem.br

Received December 14, 2005 · Accepted February 6, 2006

Bibliography

Therefore, considering that the effect of SRB leaves on fasting glycaemia mediated by STV was not well established, the present study was undertaken to investigate this possibility. Moreover, the role of liver gluconeogenesis, that is crucial for the maintenance of fasting glycaemia [13], and the participation of peroxisome proliferator-activated receptors gamma (PPARY), a nuclear mediatior of insulin sensitivity [14], [15] were examined. For this purpose, the experiments were executed by using 15-h fasted rats, which represents a favourable system for gluconeogenesis [13] and reporter gene transcription assays modulated by PPARγ in mammalian cells [16].

Materials and Methods

Plant material: SRB leaves and stevioside
Dried powdered leaves manufactured under the highest quality control were obtained from Steviapharma (Maringá, Brazil). From these dried powdered leaves standardised stevioside was obtained by a method that produces a mixture of stevioside and rebaudioside [17].

Animals and treatment protocol
Male Wistar rats (Maringá, Brazil) weighing about 220 g were employed. The manipulation of the animals followed the Brazilian Law on the protection of animals.

Experimental groups received 20 mg/kg × day SRB (SRB group) or 5.5 mg/kg × day STV (STV group) dissolved in water and administered (gavage) at 5:00 p.m. during 15 days. Control groups received water (gavage). During the treatment food and water were freely available.

Determination of glycaemia
After 15 days of treatment food was withdrawn and the rats were killed by decapitation 15 h later. Blood was immediately collected, centrifuged and the glycaemia was determined [18].

Liver perfusion experiments
After 15 days of treatment food was withdrawn and the rats were anaesthetised by an i.p. injection of sodium pentobarbital (40 mg/kg) and submitted to laparotomy. The livers were perfused in situ using Krebs Henseleit bicarbonate buffer (KHB), pH 7.4, saturated with O₂/CO₂ (95/5%). The perfusion fluid was pumped through a temperature controlled (37 °C) membrane oxygenator prior to entering the liver via the portal vein. The perfusion was performed in an open system, without recirculation of the perfusate. A constant flow rate in each experiment was adjusted according to the liver weight (4 mL/g of tissue fresh weight × min).

Fig. 1 illustrates the result of a liver perfusion experiment in which the protocol described above was employed. As shown in Fig. 1 after a pre-perfusion period (10 min), the gluconeogenic substrate was dissolved in the perfusion fluid and infused between the 10th and 30th min of the perfusion period, followed by a post-infusion period (20 min) to allow the return to basal levels.

Samples of the effluent perfusion fluid were collected at 2-min intervals and the glucose concentration was analysed [18]. The differences in the glucose production during (10–30 min) and before (0–10 min) the infusion of glycerol allowed calculation of the areas under the curves (AUC), expressed as μmol/g. Moreover, similar procedures were performed when l-glutamine (5 mM), l-alanine (5 mM) and l-lactate (2 mM) were used as the gluconeogenic substrates. During the liver perfusion experiments, l-lactate [19], pyruvate [20] and urea [21] production were also measured. Thus, the AUC of Tables 14 were obtained from similar experiments shown in Fig. 1.

Isolation and incubation of isolated hepatocytes
The isolation of hepatocytes was executed by a technique employing collagenase first described by Berry and Friend [22] and modified by Bazotte [23]. For this purpose 15-h fasted rats were anaesthetised and submitted to laparotomy. The liver perfusion started with Ca²⁺-free KHB. Afterwards, this perfusion fluid was replaced by KHB containing collagenase (0.035%) and Ca²⁺ (2.5 mM). In this phase the perfusion was done with recirculation of the perfusate that returned to the reservoir and recirculated. After 5–10 min, the fluid commenced to ooze freely from the surface of the liver. Within 10–30 min, the loss of fluid from the liver surface was too great for the perfusate to be maintained. At this point the consistency of the liver was so soft that it disintegrated on pressure unless handled very gently. The liver was then carefully removed, transferred to a Petri dish with 10–20 mL of enzyme medium at 4 °C, and broken up with a blunt spatula. After the filtration and centrifugation, we obtained a supernatant with 95–98% of isolated hepatocytes that, upon microscopic examination (Newbauer chamber), did not stain with trypan blue. The isolated hepatocytes (2 × 10⁶ cells/mL) obtained by the technique described above were incubated during 60 min with KHB (5 mL) containing l-alanine (5 mM), l-lactate (2 mM), l-glutamine (5 mM), glycerol (2 mM) or no substrate (to get basal values). All flasks were gassed (O₂/CO₂: 95/5%) and maintained in a shaking water bath at 37 °C during the incubation period. Last-
ly, the incubation medium was centrifuged and the supernatant was used for glucose [18] determination.

Cell culture, transfection and PPAR reporter transactivation assay

Human promonocyte U937 cells (Cell Culture Facility, University of California; San Francisco, CA, USA) were maintained on 37°C, CO₂ (5%) subcultured in RPMI-1640 (GIBCO; Grand Island, NY, USA) medium with foetal calf serum (10%), glutamine (2 mM), penicillin (50 units/mL) and streptomycin (50 μg/mL). For transfection assays, the cells were collected by centrifugation and re-suspended in transfection solution (0.5 mL/1.5 × 10⁷ cells) containing PBS (phosphate-buffered saline), Ca²⁺ (100 mM) plus dextrose (0.1%) and mixed with 1.5 μg of human PPARγ expression vector (provided by J. Magae, Japan) [16] and 3 μg of the luciferase (Luc) reporter (provided by J. Magae, Japan). This reporter plasmid has a synthetic PPARγ response element, containing one copy of DR-1 (5′-agctcaagcaggtcagtag-3′) cloned immediately upstream of a minimal thymidine kinase (tk) promoter (−32/ +45) linked to luciferase coding sequences. Afterwards, the cells were transferred to a cuvette and electroporated using a Bio-Rad gene pulser at 300 mV and 950 μF. Immediately after electroporation, the cells were transferred to fresh RPMI-1640 medium, plated in a 12-well dish and treated in triplicates with ethanol/DMSO 1:1 (vehicle), Pioglitazone (Sigma; St. Louis, MO, USA) at 10⁻⁵ M (PPARγ agonist) and lyophilised SRB leaves. After 24 h, the cells were collected by centrifugation, lysed by the addition of 150 μL of 1× lysis buffer (Promega; Madison, WI, USA) and assayed for luciferase activity (kit from Promega Corp.). Transfection experiments were performed at least three times. Fold activation was calculated using the ratio of luciferase numbers obtained by the samples treated with ligands with the templates treated with vehicle. Finally, to the transfection assay [24], 1 g of dried and pulverised leaves was heated/boiled for 5 min in 100 mL of water, the decocction was allowed to stand for 30 min and then filtered through a paper filter. Then, the decocction was lyophilised, and this material was kept at −20°C until use.

Statistical analysis

The GraphPad Prism program (version 2.0) was used to calculate the areas under the curves (AUC). Data were analysed statistically by the unpaired Student t test and ANOVA. A 95% level of confidence (P < 0.05) was accepted for all comparisons. Results were reported as means ± SEM.

Results and Discussion

There are few studies showing the effectiveness of herbal therapy for the management of diabetes [25]. In this context, our data shown quite clearly that SRB leaves, but not stevioside, orally-administered during 15 days decreased (P < 0.05) glycaemia (Table 1).

In contrast to our results, Jeppesen et al. [6] demonstrated favourable effects of stevioside on glycaemia. Since we used approximately the same daily dose, such a discrepancy could be attributed to several possibilities: 1) the experimental model (Wistar rats vs. type 2 Goto-Kakizaki rats); 2) the period of treatment (2 weeks vs. 6 weeks); 3) the parameter evaluated (fasting glycaemia vs. glucose tolerance test) etc. Another possibility not mentioned by Jeppesen et al. [6] could be the composition of the stevioside.

Since hepatic gluconeogenesis is crucial for glucose maintenance during fasting [13] this metabolic pathway was investigated in livers from rats treated with SRB leaves (SRB group) and the results were compared with livers of rats which received an equal volume of water (control group).

The SRB group showed lower liver glucose production (P < 0.05) from L-alanine, whereas the catabolism of L-alanine, inferred from the production of urea, pyruvate and L-lactate was not modified (Table 2). Thus, the possibility of a decreased glucose production from the pyruvate step should be considered. In confor-

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values of AUC (μmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Glucose</td>
<td>6.08 ± 0.73</td>
</tr>
<tr>
<td>Urea</td>
<td>25.94 ± 1.69</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>3.51 ± 0.52</td>
</tr>
<tr>
<td>L-Lactate</td>
<td>5.61 ± 0.88</td>
</tr>
</tbody>
</table>

* P < 0.05 vs. control group.

Table 1 Effect of the treatment with *Stevia rebaudiana* (Bert.) Bertoni leaves (SRB) or stevioside (STV) on glycaemia (mg/dL). Experimental groups received 20 mg/kg×day SRB (SRB group) or 5.5 mg/kg×day STV (STV group) dissolved in water and daily administered (gavage) at 5:00 p.m. during 15 days. The control groups received an equal volume of H₂O (gavage). Blood samples were collected from 15-h fasted rats.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SRB treatment</th>
<th>STV treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycaemia</td>
<td>94.10 ± 2.99</td>
<td>67.83 ± 5.70*</td>
</tr>
</tbody>
</table>

P < 0.05 vs. control group.
Table 3 Glucose and pyruvate production from l-lactate (2 mM) in isolated perfused livers from 15-h fasted rats that received Stevia rebaudiana (Bert.) Bertoni leaves (SRB group) or water (Control group). SRB (20 mg/kg x day) or water was administered by gavage during 15 days. The values of area under the curves (AUC) were calculated as described in Materials and Methods (Fig. 1). The data are reported as mean ± SEM of 4–6 experiments.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values of AUC (μmol/g)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>SRB</td>
</tr>
<tr>
<td>Glucose</td>
<td>10.81 ± 1.19</td>
<td>6.50 ± 0.95*</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>3.30 ± 0.50</td>
<td>6.75 ± 0.98*</td>
</tr>
</tbody>
</table>

* P < 0.05 vs. control group.

Table 4 Glucose production from l-glutamine (5 mM) and glycerol (2 mM) in isolated perfused livers from 15-h fasted rats that received Stevia rebaudiana (Bert.) Bertoni leaves (SRB group) or water (control group). SRB (20 mg/kg x day) or water was administered by gavage during 15 days. The values of area under the curves (AUC) were calculated as described in Materials and Methods (Fig. 1). The data are reported as mean ± SEM of 4–6 experiments.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values of AUC (μmol/g)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>SRB</td>
</tr>
<tr>
<td>Glucose from l-glutamine</td>
<td>24.82 ± 1.0</td>
<td>16.93 ± 1.0*</td>
</tr>
<tr>
<td>Glucose from glycerol</td>
<td>9.51 ± 0.5</td>
<td>10.51 ± 0.8</td>
</tr>
</tbody>
</table>

* P < 0.05 vs. control group.

In contrast with this proposition, livers from SRB group exhibited higher (P < 0.05) pyruvate and lower (P < 0.05) glucose production from l-lactate (Table 3). These results suggest that gluconeogenesis from the pyruvate step was decreased in the livers from the SRB group. Furthermore, lower glucose production (P< 0.05) was also obtained when l-glutamine was used as glucose precursor (Table 4).

In contrast to l-alanine, l-lactate and l-glutamine the glucose production from glycerol was not affected by the treatment with SRB leaves (Table 4).

The results obtained from the liver perfusion experiments were summarised in the Fig. 2. Starting with l-alanine and l-lactate that enter in the gluconeogenic pathway at pyruvate step, our results suggest that pyruvate carboxylase (PC) and phosphoenol pyruvate carboxylase (PEPCK) could be inhibited by the treatment with SRB leaves. According to this view, a recent investigation showed that the PEPCK expression could be influenced by SRB [26]. In agreement, glucose production from l-glutamine which, enters in the gluconeogenic pathway before the PEPCK step, was also inhibited by the treatment with SRB leaves. However, gluconeogenesis was not totally inhibited since the glucose production from glycerol, which enters in this metabolic pathway after the PEPCK step was not influenced by the treatment with SRB leaves.

In contrast to SRB leaves, we did not observe decreased glucose production in livers from animals treated with stevioside (results not shown), even when isolated hepatocytes were employed (Fig. 3).

Because PPARγ agonists reduce insulin resistance and inhibit the expression of the rate-limiting enzyme of gluconeogenesis, i.e., PEPCK [27], the possibility of an effect on PPARγ receptors was investigated. Pioglitazone, a synthetic agonist of PPARγ that has been used to improve insulin sensitivity in patients with type 2 diabetes by improving the cellular signalling triggered by this hormone, was used as a positive control. As shown by Fig. 4, in contrast to the PPARγ agonist pioglitazone, which increased PPARγ transcription activity 4.8-fold, extracts from SRB leaves did not show any effect on PPARγ. In addition, similar results were obtained when STV was tested (not shown).

Fig. 2 Effect of the treatment with Stevia rebaudiana (Bert.) Bertoni leaves on gluconeogenesis. Plasma membrane is depicted by the large rectangle and the mitochondria by the small rectangle. (d) Decreased gluconeogenesis. Abbreviations: AcCoA = acetyl-CoA; ALAN = l-alanine; ASP = aspartate; CIT = citrate; FA = fatty acid; FDP = fructose diphosphate; F6P = fructose 6-phosphate; FUM = fumarate; GAP = glyceraldehyde phosphate; G6P = glucose 6-phosphate; GLUC = glucose; L-LACT = l-lactate; MAL = malate; OAA = oxaloacetate; PEP = phosphoenol pyruvate; 2PG = 2-phosphoglycerate; 3PG = 3-phosphoglycerate; SUCC = succinate.
monstration of the absence of toxicological potential will be necessary to open the possibility for the development of a new anti-diabetic compound.

Taken together, our results showed that SRB leaves diminish the glycaemia and one of the mechanisms involved was the reduction of hepatic glucoseogenesis. Furthermore, the hypoglycaemic effect promoted by the treatment with SRB leaves was not mediated by PPARγ activation or stevioside and future studies will test new compounds and/or fractions from SRB leaves.

Acknowledgements

We thank the Steviafarm Company that furnished standardised stevioside. Financial support by the Brazilian government (CNPq) and Paraná State government (Fundação Araucária) are acknowledged.

References

13. Murad GRB, Mario EG, Bassoli BK, Bazotte RB, Souza HMM. Comparative acute effects of leptin and insulin on glucoseogenesis and ketogenesis in perfused rat liver. Cell Biochem Funct 2005; 23: 405 – 13

Our results confirmed the popular reputation of SRB leaves to reduce glycaemia. But, the possibility effects of the reproductive system must be considered [28], [29], [30]. On the other hand, these studies were contradicted by Shiotzu [31] who did experiments using methods as similar as possible to the method used by Mazzei-Planas and Kuc [28].

In view of the fact that SRB leaves contain diterpene glycosides (stevioside, rebaudiosides A, B, C, D, steviolbioside, etc) and a thousand of other compounds, including non-glycosides diterpenes, sterols, triterpenoids, flavonoids, coumarins, caffeic acid, chlorogenic acid and a variety of volatile oils [32], the identification of the hypoglycaemic molecule and/or fraction and the de-

Fig. 3 Glucose production from glucogenetic substrates in isolated hepatocyte from rats treated with stevioside (STV group) or water (control group). During 15 days the animals received STV (5.5 mg/kg×day) (STV group) or an equal volume of water (control group) by gavage. The data are the mean of 4 – 5 experiments. Abbreviations: Gly = glycerol (2 mM); L-ala = L-alanine (5 mM); glu = L-glutamine (5 mM); L-lac = L-lactate (2 mM).

Fig. 4 Effect of pioglitazone (Pio) and increasing amounts of extracts from Stevia rebaudiana (Bert.) Bertoni leaves (Stevia) on the activation of PPARγ. U937 cells were co-transfected with expression vector encoding the PPARγ receptor and a reporter vector PPAREtk-Luc. The transfected cells were treated with vehicle (ethanol:DMSO); Pio at 10−6 M: 200, 400, 800 or 1600 µg of Stevia and assayed for luciferase activity. * P < 0.05 vs. vehicle.