Dammarane-type saponins from *Panax quinquefolium* and their inhibition activity on human breast cancer MCF-7 cells

Ying-Kun Qiu a,b, De-Qiang Dou a,⁎, Li-Ping Cai a, Hai-Ping Jiang a, Ting-Guo Kang a, Bing-You Yang c, Hai-Xue Kuang c, Michael ZC Li d

a College of Pharmacy, Liaoning University of Traditional Chinese Medicine, DD Port, Dalian Economic and Technical Development Zone, 116600, Dalian, China
b Medical College, Xiamen University, 361005, Xiamen, China
c College of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
d Wellgenex Inc. 150-10451 Shellbridge Way, Richmond British Columbia, Canada, V6x 2W8

A R T I C L E I N F O

Article history:
Received 8 December 2008
Received in revised form 21 January 2009
Accepted 21 January 2009
Available online 1 February 2009

Keywords:
Quinquefoloside
Ginsenoside
Saponin
Anti-cancer

A B S T R A C T

A new compound, named quinquefoloside-Lc (1), together with nine known compounds, was isolated from leaves of *Panax quinquefolium*, and its structure was elucidated as 3β,12β,20S-trihydroxy-25-methoxydammar-23-ene 3-O-β-D-glucopyranosyl (1→2)β-D-glucopyranosyl-20-O-β-D-xylopyranosyl (1→6)β-D-glucopyranoside (1), on the basis of MS, 1D- and 2D-NMR experiments as well as by chemical degradation. The cytotoxicity of these compounds against human breast cancer MCF-7 cell line was also tested by MTT method.

Published by Elsevier B.V.

1. Introduction

Panax quinquefolium, known as American ginseng, has been used for stress and fatigue characterized by insomnia, poor appetite, nervousness, and restlessness. It has been used for conditions of weakness, convalescence, low resistance, poor immunity or debility due to chronic disease. It is also used in the regulation of various metabolic disturbances including blood sugar and lipid levels. Previously the characteristic constituents of ginseng and American ginseng and bioactive ginsenosides on anti-atherosclerosis and immunostimulating actions were studied [1–4]. In continuation of our research in the hemolytic interaction of ginsenosides, the chemical constituents of leaves of *P. quinquefolium* were studied [5,6]. This paper reports the isolation and structural determination of a new saponin, compound 1 (Fig. 1). The extensive application of 1D (1H, 13C-NMR and DEPT) and 2D (COSY, HSQC, HMBC, TOCSY and ROESY) NMR techniques was performed to characterize the structures and to establish the 1H and 13C resonance assignments of the new saponin. On the other hand, the cytotoxicities of isolated saponins against human breast cancer MCF-7 cell line were also tested by MTT method.

2. Experimental

2.1. General

HPLC was performed using a Hitachi 7100 (Hitachi Corp, Japan) with UV Detector at 203 nm; Column: ODS (5 µm, 250×4.6 mm, YMC, Japan); HR ESI-MS: 9.4 T Q-FT-MS Apex Qe (Bruker), ESI-MS: Agilent 1100 LC/MSD Trap-SL spectrometer(USA). Macroporous resin D101 (Nankai University Resin, China) and ODS-A silica gel (120 Å, 50 µm, YMC, Japan) were used for column chromatography. TLC was performed on a precoated kieselgel GF254 plate (0.2–0.25 mm, 200×100 mm, Qingdao Haiyang Chemical Group Co., Qingdao, China) using CHCl3–MeOH–H2O, and detection
was achieved by spraying 10% H₂SO₄/EtOH solution followed by heating.

2.2. Plant

Leaf of *P. quinquefolium* L. was collected from Liaoning Province, China, in June 2004 and was identified by Prof. Tingguo Kang, College of Pharmacy, Liaoning University of Traditional Chinese Medicine. A voucher specimen (20040802) has been deposited at the College of Pharmacy, Liaoning University of Traditional Chinese Medicine.

2.3. Extraction and isolation

The leaves of *P. quinquefolium* (6 kg) were extracted with 60% alcohol. The alcoholic extract was concentrated under reduced pressure, then subjected to macroporous resin D101 and eluted with water, 70% alcohol and 95% alcohol. The 70% alcohol extract (100 g) was chromatographed over silical gel eluting with CHCl₃-MeOH in a step-wise manner to furnish 6 fractions, which were further chromatographed repeatedly over ODS column with mixture of CH₃OH to yield compounds 1(30 mg), 2 (25 mg), 3 (20 mg), 4 (15 mg), 5 (20 mg), 6 (15 mg), 7 (20 mg), 8 (150 mg), 9 (30 mg) and 10 (22 mg).

Quinquefoloside-Lc (1, Fig. 1). White powder mp 193–195 °C; [α] +5.3 (c 0.1, MeOH); UVmax (MeOH): 203.5 nm; IR bands (KBr) 3367, 2918, 2841, 1583, 1462 cm⁻¹; ¹H NMR (600 MHz, C₅D₅N) and ¹³C NMR (150 MHz, C₅D₅N) see Table 1; Important HMBC, ROESY and TOCSY correlations of compound 1: see Figs. 2 and 3. HRESIMS m/z: 1131.5921 [M+Na]+ (Calcd. for C₅₄H₉₂O₂₃Na); ESI-MS (positive mode) m/z: 1131 [M+Na]+; ESI-MS (negative mode): 1108 [M-H].

2.4. Acid hydrolysis of compound 1

Compound 1 (3 mg) in 10% HCl-dioxane (1:1, 1 mL) were each heated at 80 °C for 4 h in a water bath. The reaction mixtures were neutralized with Ag₂CO₃, filtered, and then

<table>
<thead>
<tr>
<th>C</th>
<th>δH</th>
<th>δC</th>
<th>C</th>
<th>δH</th>
<th>δC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.18 d (10.2),1.82 m</td>
<td>26.8</td>
<td>26.8</td>
<td>1</td>
<td>4.92 d (7.5)</td>
</tr>
<tr>
<td>2</td>
<td>1.53 t (11.9),0.72 t (11.2)</td>
<td>39.2</td>
<td>39.2</td>
<td>2</td>
<td>4.25 m</td>
</tr>
<tr>
<td>3</td>
<td>3.26 dd (11.8,4.2)</td>
<td>89.0</td>
<td>89.0</td>
<td>3</td>
<td>4.25 t (9.1)</td>
</tr>
<tr>
<td>4</td>
<td>0.66 d (11.6)</td>
<td>39.7</td>
<td>39.7</td>
<td>4</td>
<td>4.33 m</td>
</tr>
<tr>
<td>5</td>
<td>1.47 t (13.1),1.36 m</td>
<td>18.5</td>
<td>18.5</td>
<td>5</td>
<td>3.93 m</td>
</tr>
</tbody>
</table>
| 6 | 1.42 t (14.6),1.20 d (11.3) | 35.2 | 35.1 | 6 | 3.45 dd (11.2,2.4), 1131.5921 [M+Na]+ (Calcd. for C₅₄H₉₂O₂₃Na); ESI-MS (positive mode) m/z: 1131 [M+Na]+; ESI-MS (negative mode): 1108 [M-H].

2.3. Extraction and isolation

The leaves of *P. quinquefolium* (6 kg) were extracted with 60% alcohol. The alcoholic extract was concentrated under reduced pressure, then subjected to macroporous resin D101 and eluted with water, 70% alcohol and 95% alcohol. The 70% alcohol extract (100 g) was chromatographed over silical gel eluting with CHCl₃-MeOH in a step-wise manner to furnish 6 fractions, which were further chromatographed repeatedly over ODS column with mixture of CH₃OH to yield compounds 1 (30 mg), 2 (25 mg), 3 (20 mg), 4 (15 mg), 5 (20 mg), 6 (15 mg), 7 (20 mg), 8 (150 mg), 9 (30 mg) and 10 (22 mg).

Quinquefoloside-Lc (1, Fig. 1). White powder mp 193–195 °C; [α] +5.3 (c 0.1, MeOH); UVmax (MeOH): 203.5 nm; IR bands (KBr) 3367, 2918, 2841, 1583, 1462 cm⁻¹; ¹H NMR (600 MHz, C₅D₅N) and ¹³C NMR (150 MHz, C₅D₅N) see Table 1; Important HMBC, ROESY and TOCSY correlations of compound 1: see Figs. 2 and 3. HRESIMS m/z: 1131.5921 [M+Na]+ (Calcd. for C₅₄H₉₂O₂₃Na); ESI-MS (positive mode) m/z: 1131 [M+Na]+; ESI-MS (negative mode): 1108 [M-H].

2.4. Acid hydrolysis of compound 1

Compound 1 (3 mg) in 10% HCl-dioxane (1:1, 1 mL) were each heated at 80 °C for 4 h in a water bath. The reaction mixtures were neutralized with Ag₂CO₃, filtered, and then
extracted with CHCl₃ (1 mL×3). After concentration, H₂O layer (monosaccharide portion) was examined by TLC with n-BuOH-AcOH-H₂O (4:1:5, upper layer) compared with authentic samples.

2.5. Determination of sugar components

The monosaccharide subunits were obtained by hydrochloric acid hydrolysis as described above. The sugar residue was then dissolved in 2 mL of H₂O and analyzed by HPLC under the following conditions as described in literature [10]: column, Kaseisorb LC NH₂-60-5, 250×4.6 mm i.d. (Tokyo Kasei Kogyo Co. Ltd); solvent, MeCN–H₂O (3:1); flow rate, 0.8 ml/min; detection, optical rotation. Determination of d-glucose and d-xylene present in the sugar fraction was carried out by comparison of its retention times and optical rotation (positive optical rotation) with those of authentic sample.

2.6. Cytotoxicity assay

The cytotoxicity bioassay was performed against human breast tumor (MCF-7) cell lines. MCF-7 were maintained in RPMI 1640 (Gibco) containing 10% FBS (Gibco), 2 mg/ml sodium bicarbonate, 100 µg/ml penicillin sodium salt and 100 µg/ml streptomycin sulfate. Cells were grown to 70% confluence, trypsinized with 0.05% trypsin–2 mM EDTA, and plated for experimental use. In all experiments, cells were grown in RPMI-1640 medium with 10% FBS for 24 h prior to treatment. All compounds were dissolved in DMSO at a concentration of 100 mM, then diluted in a tissue culture medium and filtered before use. 1.5×10⁵ MCF-7 cells were seeded in 96 well tissue culture plates and treated with the tested compounds or vehicle (0.1% DMSO) at various concentrations and incubated for 48 h followed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay at 570 nm. Briefly, IC₅₀ values of the tested compounds on MCF-7 cell lines were obtained from the concentration effect curves.

3. Results and discussion

A new compound, named Quinquefoloside-Lc (1), together with nine known saponins 2–10, was isolated from leaves of P. quinquefolium, and its structure was elucidated as 3β,12β,20S-trihydroxy-25-methoxydammar-23-ene 3-O-β-D-glucopyranosyl (1→2) β-D-glucopyranosyl-20-O-β-D-xylopyranosyl (1→6) β-D-glucopyranoside (1). Compounds 2–5, which were isolated for the first time from the title plant, were clarified as...
gypenoside LXXI (2), gypenoside-LXIX (3), viaginsenoside-R8 (4) [7] and (3\(\beta\),12\(\beta\),24\(S\))-12,24-dihydroxy-20-O-\(\alpha\)-arabinopyranosyl (1→6)\(\beta\)-d-glucopyranosyl)dammar-25-en-3-O-\(\beta\)-d-glucopyranosyl (1→2)\(\beta\)-d-glucopyranoside (5) [8]. Known saponins, majoroside-F1 (6), 24(\(\alpha\))-majoroside-F1 (7) [9], ginsenoside-Re (8), ginsenoside-Rb1 (9) and quinquefoloside-La (10) [6], were identified by comparison of their spectral data with the reported values.

Compound 1 was obtained as an amorphous powder. The molecular weight was determined from the positive HRESIMS at \(m/z\) 1131.5921 for the [M+Na]+ ion (calcld. 1131.5922 for C\(_{54}\)H\(_{92}\)O\(_{23}\)Na). It was positive to the Liebermann–Burchard reagents, suggesting 1 is a saponin. The \(^{13}\)C-NMR and DEPT spectra furnished 54 carbon signals, of which 23 were assigned to the sugar moieties, 31 to a triterpene moiety containing a methoxyl at \(\delta\) 50.4. The triterpene moiety was identified as \(3\beta\),12\(\beta\),20\(S\)-trihydroxy-25-methoxydammar-23-ene, whose \(^1\)H, \(^{13}\)C-NMR data were assigned by comparing with those of quinquefoloside-La, a new saponin we isolated previously from the title plant [6]. The difference between quinquefoloside-La and compound 1 was the sugar moieties. On acid hydrolysis, glucose and xylose, instead of glucose and arabinose in quinquefoloside-La, were detected by TLC comparison with authentic samples. HPLC analysis of hydrolysates of 1 indicated that the glucosyl and xylosyl are \(\alpha\)-configuration, with a ratio of 3:1. The inspection of anomeric carbons disclosed the presence of four glycosyl units in 1. Moreover, the chemical shifts, signal multiplicities, the coupling constants, and their magnitude in the \(^1\)H-NMR spectrum, as well as the \(^{13}\)C-NMR data, indicated \(\beta\)-configurations for the three glucosyl and a xylosyl, which were further attributed by 2D-NMR and comparison of their \(^1\)H, \(^{13}\)C-NMR data with those of quinquefoloside-La\(_2\), another new saponin we isolated [6]. The positions and sequences of the four glycosyl linkages were deduced from the HMBC experiment. Correlations were observed between H-1 of one 3-\(\alpha\)-inner glucose (3-Glc-1) and C-3 of the aglycone, H-1 of the 3-outer glucose (3-Glc‘-1) and C-2 of 3-Glc-1, H-1 of the xylose and C-6 of 20-Glc, H-1 of 20-Glc and C-20 of the aglycone. All \(^1\)H and \(^{13}\)C-NMR signals in 1 were completely assigned using \(^1\)H-\(^1\)H COSY, HSQC, ROESY and TOSCY spectra, whose correlations were shown in Figs. 2 and 3.

Compound 1, together with other known compounds, was assayed for cytotoxicity against MCF-7 cell line using MTT method. Ginsenoside-Rb\(_2\), a well-known active ingredient possessing anti-cancer activity, was used as a positive control. The result revealed that only compound 5 and ginsenoside Rh\(_2\) showed inhibition effect with IC\(_{50}\) values of 93.8 and 20.0 \(\mu\)mol/l, respectively, indicating ginsenosides bearing three or four glycosyls showed weaker anti-cancer activity than ginsenosides with one glycosyl.

Acknowledgements

The author gratefully acknowledges Li Wen, Centre of Analysis and Test, Shenyang Pharmaceutical University for her kind help in determination of my samples. Thanks are also given to the foundation of creative team in Liaoning Provincial Department of Education (No.2008T117).

References