Isolation and synergism of in vitro anti-inflammatory and quinone reductase (QR) inducing agents from the fruits of *Morinda citrifolia* (noni)

Viriya Nitteranon a, Guodong Zhang a,1, Benjamin J. Darien b, Kirk Parkin a,⁎

a Department of Food Science, 1605 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706-1565, United States

b Department of Medical Sciences, School of Veterinary Medicine, 2015 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, United States

ARTICLE INFO

Article history:
Received 16 September 2010
Accepted 2 November 2010

Keywords:
Morinda citrifolia
Noni
Scopoletin
Quercetin
Quinone reductase
Phase II enzyme
Inflammation
Synergistic effect

ABSTRACT

The tropical fruits and fruit products of *Morinda citrifolia*, commonly known as noni, are consumed as a food or dietary supplement with purported health benefits. The objective of this study was to investigate the potential anti-inflammatory and cancer preventive effects of noni fruit puree extracts. Bioassay-guided fractionation of an ethyl acetate (EtOAc) extract of noni, comprising ~2% noni puree solids, led to the isolation of scopoletin (1), rutin (2), and quercetin (3). Quantitative HPLC analysis of the EtOAc extract revealed levels (dry weight basis) of scopoletin at 0.62 μmol/g, quercetin at 0.26 μmol/g and rutin at 0.045 μmol/g. Scopoletin and quercetin inhibited the production of nitric oxide (NO) in a concentration-dependent manner in lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells and exhibited quinone reductase (QR) induction in cultured Hepa 1c1c7 cells. Increases in QR activity in induced cells were associated with increases in QR protein as confirmed by Western blots. Combinations of scopoletin and quercetin at a low (<10 μM) concentration resulted in synergistic suppression in nitric oxide (NO) production and down-regulated inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions in LPS-induced RAW 264.7 macrophage cells. These results suggest that the combinations of noni compounds with different groups of chemical structures might be useful to efficiently suppress inflammatory and carcinogenic processes related to iNOS and COX-2 gene overexpression. These findings may provide some basis for the purported in vitro anti-inflammatory and anti-cancer effects of noni fruits as functional foods and dietary supplements.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Morinda citrifolia, commonly called noni, is a plant typically found in the Pacific Islands, Southeast Asia, and other tropical areas. Noni fruits have been used as folk medicine for thousands of years for the alleviation of many diseases including cancer, colds, diabetes, flu, hypertension, and pain (Wang et al., 2002). Furthermore, noni juice, which is commonly prepared as a drip/exudate from senescing fruits held in fermentation vessels, is widely consumed today as a dietary supplement or food for the purported prevention of several diseases such as diabetes, high blood pressure and arteriosclerosis. So far, over 100 compounds have been identified in noni fruits. The structures of many of these are classified as anthraquinones, coumarins, glycosylated fatty acid esters, flavonoids, polysaccharides, sterols and sulfur-containing compounds. Coumarins and flavonoids are specific chemotypes of the broader chemical group of polyphenols, which are abundant antioxidant components of fruits and vegetables (Faller & Fialho, 2009). Biological testing of both crude extracts and several pure constituents of noni fruit has been performed, revealing anti-inflammatory (Akihisa et al., 2007; Deng et al., 2007), antioxidant (Su et al., 2005), antibacterial, and Phase II enzyme inducing (Pawlus, Su, Keller, & Kinghorn, 2005) activities. However, many of the isolated compounds remain unexamined in this regard. Published reports suggest that noni fruits have chemopreventive activity against some types of cancers (Taskin et al., 2009; Wang et al., 2009) but which compound(s) from noni are responsible has not been determined.

Two biological effects that influence the disease status of animals includes the up-regulation of "vitagenes", predominantly coded for by the antioxidant response element (ARE) (Calabrese et al., 2008; Song et al., 1999; Talalay, Fahey, Holtzclaw, Prestera, & Zhang, 1995), and down-regulation of signaling pathways related to chronic inflammation, as inflammation is considered a pathological factor for many diseases (Surh & Na, 2008). Phase II enzyme induction provides for protection against oxidative stress in general and carcinogenesis in particular. Phase II enzymes are involved in metabolism of potentially harmful xenobiotics by reduction of electrophilic quinones through quinone reductase (QR: NAD(P)H oxidoreductase), or conjugation with polar groups through glutathione-, glucuronidyl- and sulfo-transferase enzymes (Song et al., 1999; Talalay et al., 1995). Other
ARE-encoded enzymes and proteins that defend cells against oxidative stress include hemeoxygenase-1 (HO-1), thioredoxin reductase, sirtuins, glutamate cysteine ligase, and several heat shock proteins (Calabrese et al., 2008; Russo, 2007). The regulatory regions of inducible ARE genes are activated upon binding of the nuclear factor E2-related protein 2 (Nrf2) transcription factor. Nuclear translocation of Nrf2 has been shown to be essential in the up-regulation of these protective genes in response to oxidative stress, electrophiles, and some phytochemicals (ARE inducers) (Eggeler, Gay, & Mesecar, 2008).

Up-regulation of the ARE pathway is also believed to attenuate activation of the inflammatory pathway (Chen & Kong, 2005; Li et al., 2008). This “cross-talk” relationship was further revealed in a study that correlated potency among members of a series of established Phase II enzyme inducers with the relative ability to suppress inflammatory signaling (Li, Dinkova-Kostova, & Talalay, 2008). Nitric oxide (NO) and prostaglandin E2 (PGE2) are two mediators of the inflammatory process, and are respectively synthesized by the inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Induction of these enzymes occurs largely through the nuclear factor kappaB (NF-κB) pathway, mediated by various pro-inflammatory cytokines, including interleukin-1 and IL-6, tumor necrosis factor-α, and interleukins-1 and -6 (Clancy & Abramson, 1995). The expression of the COX-2 and iNOS is up-regulated in acute/chronic inflammatory diseases, and this link is particularly strong for COX-2 induction and colorectal cancer (Crew, Elder, & Paraskeva, 2000). Moreover, NO has been found to activate COX-2, further increasing prostaglandin production that may enhance inflammation or promote tumorigenesis (Gianchi & Masini, 2005). Therefore, suppression of iNOS/COX-2 expression and their activities is a widely recognized target for preventing inflammatory diseases and cancer (Surh & Na, 2008).

Many natural constituents from fruits and vegetables have been identified as in vitro inhibitors of COX-2 and iNOS activities, and this provides a basis for continuing to assess the potential for evaluating their anti-inflammatory effects (Lantz et al., 2007).

In the present study, bioassays for potential anti-inflammatory and Phase II inducing activities were used to direct the isolation of bioactive constituents from noni fruits. These isolated noni compounds were then tested alone and in combination in cultured cells to determine mechanistic features of their action related to potential anti-inflammatory and cancer chemopreventive effects.

2. Material and methods

2.1. Chemicals

Scopoletin, quercetin, rutin, alizarin, lipopolysaccharide (LPS) and anti-κ-actin antibody were obtained from Sigma-Aldrich Chemical Co. (Milwaukee, WI). HPLC-grade ethyl acetate (EtOAc), ethanol (EtOH), methanol (MeOH) and acetonitrile (ACN) were purchased from Fisher Scientific (Chicago, IL). Anti-iNOS, anti-COX-2, anti-NQO1 antibodies and secondary antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).

2.2. Cell culture

Mouse macrophage cells (RAW 264.7), a commonly used model for inflammatory processes (Kim et al., 2004; Mu et al., 2001; Murakami, Takahashi, Hagihara, Koshimizu, & Ohigashi, 2003; Park et al., 2006; Surh & Na, 2008), and human hepatocellular liver carcinoma (HepG2) cells obtained from ATCC (Rockville, MD) were maintained in Dulbecco’s modified Eagle’s medium (DMEM; HyClone supplemented with 10% fetal bovine serum (FBS) with 100 U/ml penicillin and 100 μg/ml streptomycin (Invitrogen, Carlsbad, CA)). The cells were grown in a humidified incubator at 37 °C and 5% CO2.

Cultured murine hepatoma cells (Hepa 1c1c7, ATCC) were grown in supplemented with 10% fetal bovine serum (FBS) with 100 U/ml penicillin and 100 μg/ml streptomycin at 37 °C and 5% CO2.

2.3. Noni extraction and isolation

Noni puree was obtained from Tahitian Noni International (American Fork, UT), stored at −4 °C for up to 10 months, freeze-dried and ground into a fine powder using a mortar and pestle prior to use. Freeze-dried noni powder (~100 g) was first extracted with ~500 ml EtOAc at −77 °C under reflux conditions for 4 h. The residue was subjected to further sequential extracts by refluxing with EtOH, and finally aqueous extraction at 40 °C for 1 h. The purpose of a sequential extraction protocol was to enrich the bioactive agent(s) in at least one of the crude solvent extracts on the basis of polarity to facilitate isolation efforts. For each extract, the solvent was removed by vacuum rotary evaporation or lyophilization to obtain extracted dry matter. A ~2 g portion of the most active crude extract, the EtOAc soluble fraction (details in results), was flash-chromatographed on a silica gel column (5.5 cm × 60 cm) using a step gradient of 30 to 100% acetone in hexane to afford 4 fractions, F1–F4 (details in results) (Fig. 1) that were resolved on the basis of segregation of material absorbing at 254 nm determined with an optical microtiter plate spectrophotometer (Spectramax Plus, Molecular Devices, CA). Preparative thin layer chromatography (TLC) on silica gel using a developing solvent of 2% MeOH in CH2Cl2 was used to resolve fraction F3 obtained from the silica gel step. Fraction F4 was subjected to flash C-18 column chromatography using 40–70% MeOH in water to afford 4 fractions (F4-1, F4-2, F4-3, F4-4). The first two fractions, eluting at 30% MeOH (F4-1) and 50% MeOH (F4-2), were further subjected to Sephadex LH-20 column (2.5 cm × 75 cm, particle size 25–100 μm) chromatography by elution with 50% aqueous MeOH. Structures of the isolated compounds were determined using 1H NMR and MS by comparison to previously reported profiles (Li, Lin, Wu, Lee, & Wu, 2004; Siddiqui, Sattar, Ahmad, & Begum, 2007; Wang et al., 1999). NMR spectra were collected on a Varian Unity-Inova 400 MHz and 500 MHz NMR spectrophotometer (Analytical Instrumentation Center, School of Pharmacy, UW-Madison). High resolution ESI-MS analyses were conducted on Agilent ESI-TOF Mass Spectrometer (Mass spectrometry/Proteomics Facility, Biotechnology Center, UW-Madison).

2.4. HPLC analysis

EtOAc crude extracts were profiled by analytical HPLC (model 1100 system, Agilent, Wilmington, DE) using 250 × 4.6 mm, 5 μm, Discovery C18 column (Supelco, Bellefonte, PA) generally using a previously reported protocol (Potterat, Felten, Dalsgaard, &
96-well microtiter plates for 24 h at 5% CO₂ and 37 °C. The medium isolated required to inhibit NO evolution by 50% was determined as an IC₅₀.

Results were expressed as % inhibition relative to control (100× the control and induced cells (\([\text{Concentration of scopoletin (6.25 to 50 μM)}\]) was compared by the CD value (the absorbance at 490 nm). All bioassay experiments were done 3 times, each in duplicate or triplicate. The results were expressed as the means± standard deviation (SD). The statistical significance of different between groups was assessed by a Student’s t-test (P<0.05).

3. Results and discussion

3.1. Noni extraction and bioassay-guided fractionation

The yield of the EtOAc crude extract was ~2% from noni (puree) powder on a dry matter basis. Initial results using Hepa and macrophage bioassays indicated the EtOAc-extracted material was over an order of magnitude more potent than crude EtOH or water extracts. Thus, anti-inflammatory and QR inducing components obtained from dried noni puree became enriched in EtOAc extractable solids. The EtOAc-extracted material inhibited the production of NO in LPS-activated RAW 264.7 macrophage cells with an IC₅₀ value of ~200 μg/ml and could double QR induction in cultured Hepa 1c1c7 cells with a CD value of 25–50 μg/ml. The EtOAc extract was fractionated on silica gel column, yielding 4 major fractions, F1–F4 which eluted from 30–100% acetone in hexane (Fig. 2). Yields of dry matter for each fraction relative to the dry matter loaded were: F1: 29.7%, F2: 9.1%, F3: 1.0%, F4: 0.2%.

Fig. 2. Silica gel chromatographic resolution of the EtOAc crude extract of noni fruit with 30–100% acetone in hexane. Fractions were collected according to absorbance at 254 nm.
2.1% and F4: 10.2%. NO inhibitory and QR induction bioassays were conducted for each of the four fractions. Fractions F1 and F2 exhibited weak NO inhibitory activity, whereas estimated IC₅₀ values for inhibition of NO evolution by fractions F3 and F4 were \(-50 \pm 25\) and \(-160 \pm 15\) µg/ml, respectively (Fig. 3). The NO inhibitory activity of F3 and F4 was not due to a cytotoxic effect as cell viabilities remained >90% (data not shown). For the QR induction assay, fractions F1 and F4 were active with CD values 25–50 µg/ml (Fig. 4). Fractions F2 and F3 were about an order of magnitude more potent than fractions F1 and F4 with CD values 2.5–3.1 µg/ml (P<0.05). Compounds with CD values of <10 µg/ml are considered attractive opportunities for further evaluation of potential as chemopreventive agents (Cuendet, Oteham, Moon, & Pezzuto, 2006). Fractions F2 and F3 are likely to contain potent QR inducing components; however since F2 exhibited weak NO inhibitory activity, efforts toward further isolation of active components were limited. Further resolution by TLC of QR inducing compounds from F2 revealed a major component (purity unknown) that exhibited major signals from ¹H NMR consistent with the presence of octanoyl residues. These components are likely to be glycosyl esters of octanoic acid (“noniosides”) which are abundant in noni tissues (Potterat et al., 2007; Wang et al., 1999). However, follow-up studies will be required to identify the active component(s) in this isolate.

3.2. Anti-inflammatory and QR inducing activities by noni compounds

One of the most potent fractions, fraction F3 which was enriched in both NO inhibiting and QR inducing activity, was subjected to further purification. Preparative TLC of this fraction yielded one major spot as visualized under UV lamp at 254 nm. Silica gel from this band was scraped, extracted with 2% MeOH in CH₂Cl₂ and subjected to ¹H NMR and MS analyses: ¹H NMR (400 MHz, in CDCl₃): δ 3.95 (3H, s, H-6′), 6.26 (1H, d, J=9.2 Hz, H-3), 7.58 (1H, d, J=9.6 Hz, H-4), 6.84 (1H, s, H-5), 6.92 (1H, s, H-8); ESI-MS m/z: 191.0358 ([M-H]⁻) (calcld. for C₁₀H₁₂O₃ 192.0344). These results confirmed the identity to be scopoletin (compound 1; Fig. 5) by comparison with previously reported spectral analyses (Siddiqui et al., 2007; Wang et al., 1999).

Scopoletin is a derivative of coumaric acid, and both the isolated scopoletin and a LPS-activated macrophage in a concentration-dependent manner with an IC₅₀ of 0.26 mM (data not shown). Previous studies have reported scopoletin to inhibit NO and PGE₂ production in LPS-stimulated RAW 264.7 cells through the inhibition of iNOS and COX-2 expression at the mRNA and protein level (Kang et al., 1999; Kim et al., 2004). Scopoletin also suppresses the production of inflammatory cytokines through inhibition of the nuclear factor (NF)‐κB, which is an important transcription factor for iNOS and COX-2, in a human mast cell line (HMC-1) (Moon et al., 2007). For the QR induction assay, the purified scopoletin from fraction F3 and the commercial standard could induce QR specific activity in cultured Hepa 1c1c7 cells with a CD value of 6.25 µg/ml (±30 µM), while cell viability was maintained >50% (data not shown).

In addition, Western blot analysis showed that scopoletin induced expression of QR protein in a dose-dependent manner (Fig. 6). In fact, there was a close agreement in the levels of scopoletin required to double both QR protein (Western blot) and cellular activity (in the bioassay). In a previous study, isolated scopoletin from Sida acuta (Morning Mallow) was found to be a QR inducer with a CD value 3.9 µg/ml (20.3 µM) (Jang et al., 2003) but underlying mechanisms have not been studied. The mechanism of scopoletin induction of Phase II enzymes is likely mediated by the Nrf2 and ARE, but the exact influence or site(s) of action of scopoletin on this pathway remains to be determined. Scoptoletin is suggested to contribute significantly to the antioxidant properties to other botanical products, especially Chinese White Olive (Canarium album Raesusch) (Liu, Qi, Ding, & Yao, 2008).

Fraction F4 from the initial silica column, particularly inhibitory on NO evolution in activated macrophages, was resolved into 4 subfractions using C18 reversed-phase flash chromatography. The first two subfractions respectively eluting in 30 and 50% MeOH in water were resolved further by Sephadex LH-20 to yield two purified compounds. ¹H NMR and MS analyses for compound 2: ¹H NMR (500 MHz, in acetone-d₆): δ 6.22 (1H, d, J=1.7 Hz, H-6′), 6.44 (1H, d, J=1.7 Hz, H-8), 6.91 (1H, d, J=8.3 Hz, H-5′), 7.54 (1H, dd, J=8.0, 2.0 Hz, H-6′), 7.69 (1H, d, J=2.0 Hz, H-2′), 5.35 (1H, d, J=7.4 Hz, H-Glu-1), 5.12 (1H, d, J=1.9 Hz, H-Rham-1), 1.00 (1H, d, J=6.1 Hz, H-Rham-6); ESI-MS m/z: 609 ([M-H]⁻) (calcld. for C₃₀H₂₄O₁₆ 610.15), and compound 3: ¹H NMR (500 MHz, in acetone-d₆): δ 6.290 (1H, d, J=1.5 Hz, H-6′), 6.549 (1H, d, J=1.5 Hz, H-8), 7.013 (1H, d, J=8.5 Hz, H-5′), 7.715 (1H, dd, J=8.0, 2.0 Hz, H-6′), 7.854 (1H, d, J=2.0 Hz, H-2′); ESI-MS m/z: 301.1 ([M-H]⁻) and [M-H]⁻) 303.2 (calcld. for C₁₆H₁₂O₈ 302.04) revealed the pure compounds to be rutin (3) and querctin (2), respectively (Fig. 5). These spectra are consistent with previously reported analyses.
The isolated quercetin inhibited NO evolution in activated macrophages with an IC₅₀ of 66 μM (data not shown). This is consistent with previous reports of quercetin effects on activated macrophages (Hamalainen, Nieminen, Vuorela, Heinonen, & Moilanen, 2007) and LPS-induced NO production in mouse microglial cells (Chen et al., 2005). By comparison, rutin exhibited weak NO inhibition. In the macrophage model, the mechanism of quercetin action involves the reduction in both mRNA and iNOS protein levels (Mu et al., 2001). Quercetin also inhibits the activation of NF-κB transcription factor, and the signal transducer and activator of transcription 1 (STAT-1), another important transcription factor for iNOS (Hamalainen et al., 2007). In the present study isolated quercetin doubled QR specific activity with a CD value of 0.6 μg/ml (~2 μM) in Hepa 1c1c7 cells which was similar to a CD value of standard (commercial) quercetin (2.5 μM) (P<0.05). Others have found quercetin to enhance ARE binding activity and Nrf2 transcription activity and suppress the level of Keap1 protein in the posttranslational level (Tanigawa, Fujii, & Hou, 2007). Quercetin and rutin exhibit other types of cancer chemopreventive activities such as the inhibition of oxidative damage to DNA (Wei, Wei-Jun, Zhi-Rong, & Ya-Ping, 2008).

3.3. Quantitative analysis by HPLC

To obtain quantitative data on the composition of noni fruits, HPLC analysis was performed to analyze noni constituents, particularly scopoletin, rutin, quercetin and alizarin (an anthraquinone) (Fig. 7). The amount of the identifiable compounds in the EtOAc extract from noni fruit powder (dry weight basis) was scopoletin: 0.62 μmol/g; rutin: 0.045 μmol/g and quercetin: 0.26 μmol/g. Comparison to previous studies (Potterat et al., 2007) indicated that scopoletin was mainly found in juice at various concentrations for different samples, but the ground noni fruit powder (GNFP) contained small amounts of the scopoletin (0.02 mg/g; 0.10 μmol/g). The differences between these samples from our studies may be due to extraction method, variety and maturity of noni fruits and whether the puree or juice was aged or freshly pressed and pasteurized. The rutin content was 0.36 mg/g (0.54 μmol/g) in GNFP (Potterat et al., 2007). This concentration is 12-fold higher than our noni fruit puree EtOAc extract. Aside from the previous factors mentioned, we speculate that residual glycosidase activity in the stored puree, either endogenous in origin or from the resident microflora, could also be partially responsible for the relative lack of rutin. However, alizarin (anthraquinone) was not detected in the EtOAc extract from noni fruit similar to previous studies (Deng, West, Jensen, Basar, & Westendorf, 2009; Potterat et al., 2007). Deng et al. (2009) found only trace amounts of anthraquinone (5,15-dimethylmorindol) in noni fruits and leaves; no other anthraquinones, such as lucidin and alizarin were detected in noni samples. These compounds are considered potentially useful as references for identification and authentication of noni fruits and their commercial products.

3.4. Scopoletin and quercetin synergistically inhibit NO production in activated macrophages

Combinations of drugs or bioactive compounds may exhibit additive or synergistic effects compared to the use of single agents (Murakami, Takahashi, Hagihara, et al., 2003; Murakami, Takahashi, Koshimizu, & Ohigashi, 2003; Ohigashi & Murakami, 2004). In this study, commercial preparations of scopoletin and quercetin from noni fruits were examined for combined effects on inhibition of NO evolution in activated macrophages. The combination at low concentrations of scopoletin (6.3 μM) and quercetin (5 μM) inhibited NO production by ~60%, more than the expected additive effect of 39% (P<0.05) (Fig. 8a). A surprising finding was that scopoletin alone at 6.3 μM barely had any inhibitory effects, and such an observation would usually lead one to conclude that it is ineffective. Thus, these results show that even components, or low levels of bioactive components, that may appear void in bioactivity may either modulate the activity of other components or require the presence of other components for their activity to be evoked. At elevated levels (2× the level of the combination showing synergism) of scopoletin:quercetin (12.5:10 μM), the combined NO inhibitory effect was less than additive (P<0.05) (Fig. 8b). This is more likely caused by a “saturation” of inhibitory action on relevant targets, rather than any true antagonistic relationship between these compounds. iNOS and COX-2 protein expression were also determined in LPS-activated RAW 264.7 cells treated with scopoletin (6.3, 12.5 μM), quercetin (5 μM), and scopoletin:quercetin mix (6.3:5.5 and 12.5:5.5 μM). Western blot analysis showed that the combination of scopoletin and quercetin significantly inhibited iNOS and COX-2 expressions (Fig. 9). The
synergistic and antagonistic effects of the combinations may depend on the chemical structures of the compounds and the possible formation of stable intermolecular complexes (Peyrat-Millard & Berset, 2003). Furthermore, these two compounds likely act at different targets and/or with different mode of actions in a manner that efficiently suppresses inflammatory-related gene expression. For example, scopoletin could inhibit iNOS expression through NF-κB transcription factor but quercetin also suppresses iNOS expression through NF-κB and STAT-1 transcription factors (Hamalainen et al., 2007). Similarly, Cheung, Khor, and Kong (2009) reported that the combination of curcumin (anti-inflammatory effect) and sulforaphane (Phase II enzyme inducer) could be more effective than either used alone in preventing inflammation. Evidence of synergistic action between multiple bioactive food agents serves to reinforce the paradigm that a diversity of food products from botanical origin may be more effective at promoting health than single highly potent compounds (“silver bullets”). In this regard, it would be interesting to determine if the ratio and levels of many of the bioactive compounds in noni fruit would yield even greater synergism than the binary mixtures used in this study.

4. Conclusion

In this study, scopoletin and quercetin were isolated from noni fruit puree as potentially beneficial components related to anti-inflammatory and anti-cancer activities. In the anti-inflammatory bioassay, a synergistic relationship between these two components (at ~5 μM each) at the same ratio they are present in the active extract of noni puree. The combined actions of these compounds likely involve multiple mechanisms of biological effect. Given the presence of many other bioactive components identified in noni fruit, it is possible that even lower (<1 μM) or even trace levels may contribute in a significant way to the overall biological effect of this fruit in vitro or in vivo. Further efforts should focus on examination of the biological effects of more complex mixtures of bioactive noni components, in the context of designing combinations where components are known to act by different mechanisms. Such studies may improve our understanding and knowledge of potential beneficial effects of consuming noni fruits as food or and dietary supplement.

Fig. 7. HPLC chromatographic profile of the EtOAc extract from noni fruits. 1: scopoletin, 2: rutin and 3: quercetin.

Fig. 8. Effect of commercial sources of scopoletin, quercetin and their combination with various concentrations on LPS-induced RAW 264.7 macrophage in inhibiting NO production. (a) scopoletin 6.25 μM and quercetin 5 μM, (b) scopoletin 12.5 μM and quercetin 10 μM.

Fig. 9. Effect of commercial sources of scopoletin, quercetin and their combination on LPS-induced iNOS and COX-2 protein in RAW 264.7 cells, lane 1: untreated-RAW 264.7, lane 2: LPS-treated cells, lane 3: 6.3 μM scopoletin, lane 4: 12.5 μM, lane 5: 5 μM quercetin, lane 6: scopoletin:quercetin (6.3:5 μM) and lane 7: scopoletin:quercetin (12.5:5 μM).
Acknowledgements

This work was supported by the Thai Government Science and Technology Scholarship (to VN), the College of Agricultural and Life Sciences in part through a Hatch grant (WIS01184), and the School of Veterinary Medicine, of the University of Wisconsin-Madison.

References

