Pharmacological effects of mitraphylline from Uncaria tomentosa in primary human monocytes: Skew toward M2 macrophages

S. Montserrat-de la Paz a,b, R. de la Puerta a, A. Fernandez-Arche a, A.M. Quilez a, F.J.G. Muriana b, M.D. Garcia-Gimenez a, B. Bermudez a,*

a Department of Pharmacology, School of Pharmacy, University of Seville, Spain
b Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, Seville, Spain

A R T I C L E I N F O

Article history:
Received 4 February 2015
Received in revised form 2 May 2015
Accepted 3 May 2015

Ethnopharmacological relevance: Uncaria tomentosa (Willdenow ex Roemer & Schultes) DC. (Rubiaceae) is a Peruvian thorny liana, commonly known as “cat’s claw”, and traditionally used in folk medicine to deal with several inflammatory diseases. Mitraphylline (MTP) is the most abundant pentacyclic oxindolic alkaloid (POA) from U. Tomentosa and has been reported to modify the inflammatory response. Herein, we have sought to identify the mechanisms underlying this modulatory effect of MTP on primary human monocytes and its ability to regulate differentiation processes on human primary monocyte and monocyte-derived macrophages.

Material and methods: In vitro studies with human primary monocytes and monocyte-derived macrophages were performed. Monocytes and M0 macrophages were exposed to MTP (25 μM) and LPS (100 ng/mL). M0 macrophages were polarized to M1 and M2 phenotypes in the absence or presence of MTP. The activation state of monocytes/macrophages was assessed by flow cytometry, gene expression and protein analysis of different specific markers.

Results: In human primary monocytes, the incubation of MTP for 24 h reduced the number of classical (CD14++CD16−) and intermediate (CD14++CD16+) subsets when compared to untreated or LPS-treated cells. MTP also reduced the chemotactic capacity of human primary monocytes. In addition, MTP promoted the polarization of M0 macrophages toward an anti-inflammatory M2 phenotype, the abrogation of the release of pro-inflammatory cytokines such as TNFα, IL-6 or IL-1β, as well as the restoration of markers for M2 macrophages in LPS-treated M1 macrophages.

Conclusions: Our results suggest that MTP may be a key modulator for regulating the plasticity of monocytes/macrophages and the attenuation of the inflammatory response.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Uncaria tomentosa (Willdenow ex Roemer and Schultes) DC and its relative Uncaria guanensis (Aublet) Gmell. (Rubiaceae) are plants widely used in folk and complementary medicine under the names of “Cat’s claw”. Uncarias are vines naturally growing in Peru and some other countries of South and Central America, and have their numerous applications in both human and animal medicine. U. tomentosa has been previously reported to deal with several inflammatory diseases (Müller and Kanfer, 2011; Rosenbaum et al., 2010), modulating the immune system, and antitumor activities (García-Gimenez et al., 2010; Rojas-Duran et al., 2012; Dietrich et al., 2014). Owing to the systematically growing applications of U. tomentosa in therapy, it is important to better recognize its pharmacological properties and safety of using.

Cat’s claw contains more than 50 chemical constituents, including oxindole and indole alkaloids, polyphenols, among others (Heitzman et al., 2005). The majority alkaloids of Uncaria are indole and oxindole families (Laus, 2004), which are well recognized as phytochemical markers of this species with relevant pharmacological activities (Heitzman et al., 2005). Mitraphylline (MTP) is an oxindole alkaloid and the most ubiquitous alkaloid being present in 20 of 34 Uncaria species (Heitzman et al., 2005). Most of pharmacological studies have been focused on the fractions of either a plant species or a “crude drug”, considered as a
preparation from either a single or a mixture of Uncaria plants. However, fewer studies, if any, have paid attention to the bioactivity of isolated compound(s) such as MTP. Our research team have previously reported the isolation of MTP from the dried inner bark of U. tomentosa, the elucidation of its structure by NMR spectroscopy analysis, and its antitumor properties on human sarcoma and breast cancer cells (García-Prado et al., 2007). However, little is known on the potential of MTP to mitigate the inflammatory response.

Monocytes are particularly involved in inflammatory processes (Shi et al., 2011). They are classified into three subsets: classical CD14+CD16−, intermediate CD14+CD16+, and non-classical CD14+CD16+ monocytes (Ziegler-Heitbrock et al., 2010). So far, classical monocytes represent the major fraction, about 85% of total monocytes that highly express the migratory chemokine receptor CCR2 (Ingersoll et al., 2010; Wong et al., 2012). They are professional phagocytes giving rise to classical M1 macrophages, which generate reactive oxygen species and secrete cytokines (TNFα, IL-1β, IL-6) in response to LPS during infection or inflammation (Mossig et al., 2009; Wong et al., 2012; Zwaada et al., 2011). Intermediate monocytes display highest levels of CCR5, TLR4, CD163, and HLA-DR during activation and also secrete pro-inflammatory cytokines (Wong et al., 2012; Shantsila et al., 2011). Non-classical monocytes are less granular and smaller in size, with lower expression of CCR2 than classical or intermediate subsets (Cros et al., 2010; Wong et al., 2012; Shantsila et al., 2011). These monocytes rich in CD16 are functionally involved in tissue repair, patrolling, wound healing, and have the tendency to be polarized into non-classically M2 macrophages with an anti-inflammatory phenotype in response to a variety of stimuli, including IL-4 (Benoit et al., 2008; Gordon and Martinez, 2010).

In the present study, we further investigated whether MTP may act as an immune-modulator and anti-inflammatory effector on human primary monocytes and monocyte-derived macrophages.

2. Material and methods

2.1. Bark extract

The plant material was collected in the Peruvian forest and was provided by Dr Carlos S González and was identified in the Botanic Department of the San Lorenzo Chemical Science School from the Asuncion University in Paraguay. The plant extract was obtained and the compound MTP identified as previously described (García-Prado et al., 2007). Briefly, 500 g of U. tomentosa dried inner bark was treated with ammonium hydroxide and extracted with 500 mL of dichloromethane for 3 times. After filtration, the obtained solution was concentrated in vacuo to afford a residue, which was dissolved in a hydrochloric acid solution (3%). Ammonium hydroxide and dichloromethane were added again. After concentration in vacuo, the purified alkaloid fraction was obtained as a brown residue and the yield was 0.1%.

2.2. Isolation and identification of MTP

The dried residue of alkaloid fraction (0.5 g) was subjected to a silica gel column chromatography, compacted with silica gel 0.063–0.2 mm (0.8 x 25 cm), followed by a gradient elution with various mixtures of n-hexane, dichloromethane, and methanol. Twenty-five fractions of about 15 mL each were collected. 200 mg of white crystal (MTP) was obtained in the fractions 14–16 (eluted with dichloromethane/methanol) that corresponded to 87.2% of the total alkaloids. EIMS and 1H and 13C NMR experiments were carried out for its identification using an AVANCE 500 spectrophotometer. The following 2D NMR experiments COSY-DQF, (1H-13C)-HSQC, (1H-15N)-HMBC, and NOESY correlation were used to elucidate its structure. Furthermore, the 15N chemical shift of the isomeric oxindole alkaloids, (1H-15N)-HMBC, was necessary to facilitate its characterization. The solvent used for NMR spectra was CDCl3 (García-Prado et al., 2007).

2.3. Blood collection and monocyte isolation

This study was conducted according to the guidelines of good clinical practice. Peripheral venous blood was isolated from healthy adult volunteers (< 35 years old) from the Hospital Virgen del Rocío at Seville. The investigation conformed to the principles outlined in the Helsinki Declaration of the World Medical Association. Donors declared that they were non-smokers and were not taking any medication. Blood samples were immediately collected into K3-EDTA-containing Vacutainer tubes (Becton Dickinson, NJ, USA) and peripheral blood mononuclear cells (PBMCs) were isolated by centrifugation over Ficoll Histopaque gradient (Sigma-Aldrich Chem, MO, USA). Monocytes were then isolated from PBMCs using positive selection with CD14 MicroBeads according to the manufacturer’s instructions (MACS, Miltenyi Biotec, Madrid, Spain). Monocytes were tested for purity by CD14 fluorescence isothiocyanate labeling and fluorescence-activated cell sorter (FACS) analysis using a FACSCount II flow cytometer and FACS Diva software (Becton Dickinson Immunocytometry Systems, CA, USA) (Valera et al., 2011). Following isolation, the cells were suspended in a RPMI 1640 medium supplemented with l-glutamine, penicillin, streptomycin, and 1% heat-inactivated FCS. The monocytes were used within 24 h after isolation for the experiments.

2.4. Monocyte differentiation and polarization into M1 and M2 macrophages

Monocytes were induced to differentiate for 6 days in the presence of recombinant human M-CSF (25 ng/mL) to obtain M0 macrophages. These cells were then cultured in RPMI 1640 supplemented with l-glutamine, penicillin, streptomycin, and 10% heat-inactivated FCS. For M1 and M2 polarization, M0 macrophages were exposed to LPS (100 ng/mL) plus IFNγ (20 ng/mL) and to IL-4 (20 ng/mL), respectively, for additional 24 h. MTP (25 μM) was also added to the medium as indicated.

2.5. Cell viability

Monocytes and macrophages seeded in 96-well plates (1 x 105 cells/well) were incubated in the presence (or absence) of different MTP concentrations for 24 h. At the end of the exposure time, cell viability was analyzed by Annexin V binding and using a FACScount II flow cytometer with a CellQuest software (BD).

2.6. Nitrite and cytokine production

Cells in 24-well plates were treated (or untreated) with MTP (25 μM), and 30 min later stimulated with LPS (100 ng/mL) for 24 h. The culture supernatants (100 μL) were transferred to a 96-well assay plate mixed with Griess reagent (Sigma-Aldrich Chem) and incubated for 15 min at room temperature. The amount of nitrite, as an index of NO generation (Csonka et al., 2015), was determined by the absorbance at 540 nm in an ELISA reader (BioTek, Bad Friedrichshall, Germany). After the extrapolation from a standard curve with sodium nitrite, the results were expressed as the percentage of nitrite compared with that of cells treated with only LPS. Dexamethasone (1 μM, Sigma-Aldrich Chem) was used as positive control.
The cytokines levels of IL-1β, IL-6, and TNFα, which were released into cell supernatants, were measured by ELISA, following the indications of the manufacturer (Diaclone).

2.7. Immunostaining analysis by FACS

Membrane surface expression of CD16 (PE anti-human CD16, Miltenyi Biotec), CD14 (APC-Cy7 anti-human CD14, Miltenyi Biotec), and CCR2 (APC anti-human CCR2, BD) in monocytes was assessed by FACS. According to the manufacturer’s instructions, 5 × 10⁵ of purified monocytes, after in vitro stimulation with (or without) LPS (100 ng/mL), were incubated with the above antibodies in the dark, at room temperature for 15 min. Thereafter, cells were fixed and erythrocytes were lysed with a volume (20 ×) of FACS lysing solution (BD). Fluorescence intensity was measured in a FACS Canto II flow cytometer with a CellQuest software (BD). Results were analyzed using the Win-List software package (Verity Software House, ME, USA). Mean fluorescence intensity (MFI) of 10⁵ counted cells was measured in each sample. Monocytes were gated as forward scatter (FSC)-side scatter (SSC) cells. Expression levels were presented as MFI corrected for nonspecific binding of isotype control antibodies.

2.8. RNA isolation and qRT-PCR analysis

Total RNA was extracted from cells by using Trisre Reagent (Bioline), as instructed by the manufacturer. RNA quality was assessed by A₂₆₀/A₂₈₀ ratio in a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific). RNA (1 μg) was subjected to reverse transcription (iScript, Bio-Rad, CA, USA) according to the manufacturer’s protocol. An amount of 20 ng of the resulting cDNA was added to Brilliant SYBR green QPCR Supermix (Bio-Rad) containing 10 mM Tris-Cl pH 8.5, 50 mM KCl, 2 mM MgCl₂, 0.00125% (w/v) SDS, 0.1% (v/v) Tween 20, 100 μM of each dNTP, and 0.2 μM of each primer pair. Amplification reactions were performed in triplicate and average threshold cycle (Ct) numbers of the triplicates were used to calculate the relative mRNA expression of candidate genes. The magnitude of change of mRNA expression for candidate genes was calculated by using the standard 2^-ΔΔCt method. All data were normalized to endogenous reference (GAPDH and β-actin) gene content and expressed as percentage of controls.

2.9. Immunoblotting detection

Macrophages derived from primary monocytes (1 × 10⁶ cells/mL) were treated (or untreated) with MTP (25 μM) and LPS (100 ng/mL) for 18 h. After incubation, cells were rinsed, scraped off, and collected in ice-cold PBS containing a cocktail of protease and phosphatase inhibitors and processed to isolate cytoplasmic proteins. Protein concentration was measured for each sample using a protein assay reagent (Bio-Rad) according to the Bradford’s method and using γ-globulin as a standard (Bradford, 1976). Aliquots of supernatant containing equal amount of protein (20 μg) were separated on 10% acrylamide gel by SDS polyacrylamide gel electrophoresis. In the next step, the proteins were electrophoretically transferred into a nitrocellulose membrane and incubated with specific primary antibodies, polyclonal mouse anti-human TNFα and IL-1β (Abcam, London, UK) and monoclonal mouse anti-human b-actin (Sigma, Milan, Italy), overnight at 4 °C. After rinsing, the membranes were incubated with a horseradish peroxidase-labelled (HRP) secondary antibody anti-rabbit (Cayman Chemical, MI, USA) (1:50,000) or anti-mouse (Dako, CA, USA) (1:2000) containing blocking solution for 1–2 h at room temperature. To prove equal loading, the blots were analyzed for β-actin expression using an anti-β-actin antibody (Sigma Aldrich Chem). Immunodetection was performed using enhanced chemiluminescence light-detecting kit (Pierce, IL, USA). The immunosignals were captured using a LAS-3000 Imaging System from Fujifilm Image Reader (Stamford, USA). Following normalization to the housekeeping loading control, the signals were analyzed and quantified by an Image Processing and Analysis in Java (Image J, Softonic).

2.10. Wound healing assay

M0/M1 macrophages were plated in a 24-well tissue culture plate in complete growth medium to attain ~80% confluence. Cells were allowed to adhere for 24 h and then a line was scraped with a P-1000 micropipette tip. Non-adherent cells were aspirated away, and complete growth media was replaced. Macrophages were then incubated with MTP in the presence (or absence) of 10 nM recombinant human MCP-1 (PeproTech EC, London, UK). Serial images were taken at designated time points at ×100 magnification with Image J software, a standardized grid was placed over the images across the breadth of the denuded zone, and cells migrating into this zone were counted in a blinded fashion. Each quantified sample represents counts from four different wells with two serial images taken per well.

2.11. Data analysis

All values in the figures and text are expressed as arithmetic means ± standard error (SEM). Data were evaluated with Graph Pad Prism Version 5.01 software (CA, USA). The statistical significance of any difference in each parameter among the groups was evaluated by one-way analysis of variance (ANOVA) following
Fig. 1. (A) Apoptosis and necrosis representative pictures of flow cytometry analysis from human monocytes isolated from PBMCs (primary monocytes) after 24 h incubation with MTP (25 μM) or Staurosporine (1 μM). (B) FACS analysis of monocyte surface markers CD14 and CD16 after 24 h incubation with LPS (1 nM) in the absence or presence of MTP (25 μM). (C) CCR2 quantification and representative pictures of monocyte flow cytometry analysis after 24 h incubation with LPS (1 nM) in the absence or presence of MTP (25 μM). Values marked with different letters are significantly different (*P < 0.05).
Dunnett’s multiple comparisons test as post hoc test. P-Values less than 0.05 were considered statistically significant.

3. Results

3.1. MTP upsetting the balance of primary monocyte subsets

Monocytes were analyzed for cell viability and different subset markers after 24 h of incubation with MTP (25 μM). Contrarily to staurosporine (1 μM) that was used as a positive control of cell death and caused spontaneous apoptosis (>52%) and necrosis (>19%), MTP did not induce any significant loss of viability in monocytes (Fig. 1A). Next, we measured surface expression of phenotypic markers (CD14 and CD16) to distinguish between classical, intermediate, and non-classical monocyte subsets. To approach this, primary monocytes were exposed to LPS (100 ng/mL) alone or in the presence of MTP. Compared to control untreated cells, LPS significantly increased the expression of CD14 in the classical and intermediate monocyte subsets (Fig. 1B), MTP did not only abrogate this LPS-related effect by decreasing the expression of CD14, but also by significantly increasing the expression of CD16 and thereby of non-classical monocyte subsets. In addition, MTP significantly decreased CCR2 expression in the classical monocyte subset (Fig. 1C).

3.2. MTP shifts M1 to M2 macrophage phenotype

Monocytes were cultured for 6 days with human recombinant M-CSF (25 ng/mL) to mature into M0 macrophages. The FACS analysis showed that 97% of M0 cells were positive for the macrophage marker CD68 (Fig. 2A). These cells were then treated with IFNγ (20 ng/mL) or IL-4 (20 ng/mL) for 24 h to generate M1 or M2 macrophages, respectively. Gene expression of phenotypic markers for M1 (CD64, CD80, and CD163) and M2 (CD200r and MR) macrophages was examined. As expected, CD64, CD80, and CD163 were upregulated by LPS plus IFNγ in M1 macrophages (Fig. 2B–D), whereas CD200r and MR were upregulated by IL-4 in M2 macrophages (Fig. 2E and F). The presence of MTP during the treatment of M0 macrophages with IFNγ prevented the expression of M1 markers, reaching comparable levels to those found in M2 macrophages, and increased M2 markers.

Based on active aerobic glycolytic program in M1 macrophages that results in high production of nitrite oxides (NO2⁻) (Galvan-Peña et al., 2014), we tested the influence of MTP on NO2 production in M0 macrophages treated with IFNγ. It was interesting to note that MTP completely abolished to normalize NO2 levels in these cells (Fig. 2G).

3.3. MTP restricts CCR2-dependent migration

Classically activated M1 macrophages are recruited into inflamed tissues partly via CCR2 (Fadini et al., 2014) and the CCR2–CCL2 axis is one of the key regulatory pathways in macrophage migration (Izumi et al., 2013). In contrast, alternatively activated M2 macrophages are characterized by their poor migratory capacity and key role in the resolution of the inflammatory response and regenerative repair in wound healing. Compatible with this notion, we found increased gene expression of CCR2 and CCL2 in M1 macrophages but decreased gene expression of CCR2 and CCL2 in M2 macrophages when compared to M0 macrophages (Fig. 3A and B). Of note, MTP significantly decreased gene expression of CCR2 in M0 macrophages treated with LPS and IFNγ to levels close to those observed in M2 macrophages (Fig. 3A). These findings were in agreement with an MTP-induced reduction of cell motility during the treatment of M0 macrophages to be polarized into M1 macrophages, even when CCL2 was added (Fig. 3C).

3.4. MTP prevents secretion of pro-inflammatory cytokines

Next, we investigated the effect of MTP on macrophage activation by determining its ability to modulate pro-inflammatory cytokine production in response to LPS. M0 macrophages were exposed to LPS in the absence or presence of MTP for 24 h. MTP induced a decrease in the gene expression (Fig. 4A–C), and the...
protein expression (Fig. 4D and E) and secretion (Fig. 4F–H) of TNFα, IL-1β, and IL-6 in LPS-treated M0 macrophages.

4. Discussion

The uses of western therapies to treat inflammatory diseases are often suboptimal in terms of their associated side effects and cost. Currently, *U. tomentosa* is known as an herbal drug in several South American countries due to its beneficial effects on DNA repair and immune function (Sheng et al., 2000; Farias et al., 2012). *Uncaria* has proven to be a very valuable genus to the discovery and utilization of medicinal natural products that includes alkaloids. Therefore, the potential for development of leads from *Uncaria* needs to grow, particularly in the area of immunology, inflammation, and vascular-related disorders. The immunostimulant activity of pentacyclic oxindolic alkaloids (POA) from *U. tomentosa* may occur by increasing phagocytosis of granulocytes and macrophages, and by blocking the proliferation of myeloid cells (Keplinger et al., 1999). MTP is the most ubiquitous and abundant POA from *U. tomentosa* and a recognized molecule with potent immunomodulatory and anti-inflammatory effects (Domingues et al., 2011). However, little is known about the mechanisms through which those POA, and specifically MTP, are acting on the immune system and inflammatory pathways.

One of the pivotal cells for the initiation of inflammation is monocytes, which exhibit different phenotypes according to the expression of the surface markers CD14 and CD16 (Zawada et al., 2012). CD14 responses to bacterial LPS via toll-like receptor 4 (Hansson and Hermansson, 2011), whereas CD16 (FcyR-III) renders monocytes targets for activation by IgG-containing immune complexes (IC) (Grivennikov and Karin, 2011). The majority of circulating monocytes belong to the classical monocytes CD14++CD16−; the remaining monocytes are described as the intermediate CD14++CD16+ and the non-classical CD14+CD16++ subsets (Zawada et al., 2011). The classical and intermediate monocyte subsets has a pro-inflammatory phenotype that actively produces TNFα (in response to LPS), IL-1β, IL-6, and leads to the progression of numerous inflammatory disorders such as atherosclerosis (Rogacev et al., 2014). Therefore, a proper balance among the different monocyte subsets may be critical to prevent persistent inflammation and to achieve controlled repair. This study is the first to demonstrate that MTP may regulate the CD14/CD16 signature in human monocytes. MTP counteracted the imbalance of increased classical (CD14++CD16−) and intermediate (CD14++CD16+) monocytes, and decreased non-classical (CD14+CD16++) monocytes that induced LPS. This ability of MTP involved a decrease of CD14 expression and an increase of CD16 expression, resulting in a population of monocytes with lower classical and higher non-classical subsets. We also found that LPS-treated monocytes exposed to MTP were less migratory. Despite of the fact that CCR2 was less expressed in intermediate and non-classical monocytes in comparison with classical monocytes, MTP was shown to diminish CCR2 surface expression in all monocyte population but particularly in classical monocytes when co-treated with LPS. These findings could be explained due to the fact that CCR2 is not a static entity but is subjected to dynamic regulation in a time-dependent fashion by LPS (Heesen et al., 2006).

In response to inflammatory stimuli (i.e., LPS), the classical monocytes are selectively trafficked, in first instance, to the sites of inflammation, producing pro-inflammatory cytokines and contributing to local and systemic inflammation (Yang et al., 2014). These monocytes are highly infiltrative and can be differentiated into inflammatory macrophages, M1 acting in the acute phase of inflammation. In steady state, the non-classical patrolling monocytes patrol the vascular endothelium and become resident macrophages when they infiltrate into the inflamed tissue. During
the late phase of inflammation, differentiated non-classical monocytes (formally M2 macrophages) acquire an anti-inflammatory phenotype, which contribute to a shutdown of activated leukocytes and repair of damaged tissues (Murray and Wynn, 2011). Sustained inflammation degenerates in chronic inflammatory diseases (Hotamisligil, 2006). Therefore, we decided to evaluate whether the shift from classical toward non-classical monocytes caused by MTP could lead to a different behavior during polarization of macrophages derived from primary monocytes (M0 macrophages). It was exciting to observe that these macrophages, when treated with MTP, were hyporeactive to inducers (LPS and IFNγ) of M1 polarization and displayed a strong alternative activation as similarly occurred in response to the inducer (IL-4) of M2 polarization. Moreover, we found that M1 macrophages underwent a phenotypic regression toward M2 macrophages in the presence of MTP. These findings suggest that MTP not only might have a potential role to reduce the M1/M2 macrophage ratio by an increased availability of non-classical monocytes, but also by interfering the polarization of M1 macrophages in a manner that is reminiscent of macrophage polarization to M2. In accordance with this notion, MTP dramatically reduced CCR2 expression and abolished the chemotactic capacity of macrophages during M1 polarization. MTP also decreased the expression and secretion of several pro-inflammatory cytokines, which agreed with a previous study reporting decreased plasma levels of TNFα, IL-1α, and IL-1β by oral administration of MTP in a murine model of LPS-induced inflammation (Rojas-Duran et al., 2012). The additional effect of MTP to abolish nitric oxide production during macrophage polarization to M1 expands the current knowledge on antioxidant effects of other chemicals from Uncaria such as tannins and condensed tannins (Desmarchelier et al., 1997). Collectively, we show for the first time that MTP, one of the major alkaloids of U. tomentosa, is able to modulate the phenotype and function of innate immune cells that are intimately involved in inflammation. Traditionally, Uncaria has been used due to its anti-inflammatory properties. Our results indicate unknown qualities of MTP, which could be partly responsible for the anti-inflammatory activity of Uncaria’s extracts (Aguilar et al., 2002).

5. Conclusion

In conclusion, we are the first to show that MTP might confer protection against inflammatory processes by skewing macrophage polarization to M2. This natural compound from U. tomentosa could be considered as a new player for therapy against inflammatory disorders. Nevertheless, further investigation must be conducted to approach this new therapeutic horizon.

Conflicts of interest

We declare that we do not have any financial or other relationships that might lead to a conflict of interest.
Funding sources

None.

Authorship

The authors’ responsibilities were as follows—MS and BB: participated in the study design and performed the data analysis; MS, PR, FAA, QA, MFJG, GGM and BB: assisted with the editing of the manuscript; MS, PR, FAA, QA, MFJG, GGM and BB: acquired the data; and BB: wrote the first draft and finalized the manuscript. All authors participated in the analytic discussion of the results and approved the final version of the manuscript.

Acknowledgments

This work was supported by the University of Seville, “V Own Research Plan” contract to BB and QA. MS has the benefit of a FPI fellowship (BES-2012-056104) of MICINN.

Reference

