Coriandrum sativum L. Protects Human Keratinocytes from Oxidative Stress by Regulating Oxidative Defense Systems

G. Park\textsuperscript{a} H.G. Kim\textsuperscript{b} Y.O. Kim\textsuperscript{c} S.H. Park\textsuperscript{d} S.Y. Kim\textsuperscript{d} M.S. Oh\textsuperscript{a, b}

\textsuperscript{a}Department of Life and Nanopharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, and \textsuperscript{b}Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, \textsuperscript{c}Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Bisan-ri, and \textsuperscript{d}Department of Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Republic of Korea

Abstract

Background: Oxidative radicals are major environmental causes of human skin damage. Oxidative defense factors, including nuclear factor erythroid-derived 2-related factor 2 (Nrf2), are centrally involved in repairing skin cells or protecting them from oxidative damage. \textit{Coriandrum sativum} L. (coriander; CS) is a commonly consumed food and a traditional phytomedicine in Asia and Europe. In this study, we examined the protective effects of a standardized CS leaf extract against oxidative stress in human HaCaT keratinocytes.

Methods and Results: CS significantly and dose-dependently protected cells against reduced cell viability caused by \(H_2O_2\)-induced damage, as assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Other assays demonstrated that CS protected HaCaT cells by increasing the levels of glutathione and activities of oxidative defense enzymes, such as superoxide dismutase and catalase. Moreover, it increased the expression of activated Nrf2, which plays a crucial role in protecting skin cells against oxidative stress. Conclusion: These results suggest that CS protects human keratinocytes from \(H_2O_2\)-induced oxidative stress through antioxidant effects.

Key Words
Coriandrum sativum L. · Keratinocyte · Antioxidative · Nuclear factor erythroid-derived 2-related factor 2 · Oxidative defense enzymes

Introduction

The skin, the largest organ of the human body, is constantly exposed to pro-oxidant environmental stresses, such as ultraviolet (UV) radiation [1, 2]. Chronic exposure of the skin to pro-oxidants results in the development of oxidative damage, leading to several skin disorders, including hyperpigmentation, immunosuppression, inflammation and premature aging of the skin [2]. \(H_2O_2\) is produced when cells are exposed to extracellular stimuli, and it is easily converted into radicals, such as superoxide anion and hydroxyl radicals, which damage many cellular components [3, 4]. Radical production is eliminated by oxidative defense enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione.
CAT and GSH scavenges radicals initiated by H\textsubscript{2}O\textsubscript{2} down into O\textsubscript{2} and H\textsubscript{2}O. The combination of SOD, dysentery, rheumatism and giddiness in traditional medicinal seeds are used as a spice. CS is also used to treat cough, tinocytes and fibroblasts in the skin from the ravages of quione 1 and heme oxygenase 1, thereby protecting keratinocytes. To investigate its protective effects, we measured reactive oxygen species (ROS) production, GSH levels, and the activities of SOD and CAT, and Nrf2 upregulates a set of antioxidants, including GSH, response elements in the enhancers of target genes.

In the presence of stimulants, such as oxidants and UV radiation, Keap1 dissociates from Nrf2, allowing it to accumulate in the nucleus, where it binds to antioxidant response elements in the enhancers of target genes [6–9]. Nrf2 upregulates a set of antioxidants, including GSH, quione 1 and heme oxygenase 1, thereby protecting keratinocytes and fibroblasts in the skin from the ravages of oxidative stress [6, 8, 10].

Coriandrum sativum L. (coriander; CS), an annual herb that belongs to the carrot family (Umbelliferae), is cultivated extensively in Europe and Asia [11]. The leaves of CS are commonly eaten as a food seasoning and the seeds are used as a spice. CS is also used to treat cough, dysentery, rheumatism and giddiness in traditional medicine [11, 12]. Previous studies reported that it has anti-inflammatory potential in UV erythema and antioxidant effects in rats fed a high-fat diet [13, 14]. Chemically, CS is known to contain large amounts of essential oils and fatty acids [15, 16]. It also contains well-known antioxidants, such as caffeic acid, ferulic acid, chlorogenic acid, linoleic acid and linolenic acid [17].

In this study, we evaluated the effect of a CS leaf extract on H\textsubscript{2}O\textsubscript{2}-induced oxidative stress in human HaCaT keratinocytes. To investigate its protective effects, we measured cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Then, to identify the possible mechanisms involved, we measured reactive oxygen species (ROS) production, GSH levels, and the activities of SOD and CAT, and Nrf2 immunofluorescence.

**Materials and Methods**

**Chemical**

Dulbecco's modified Eagle's medium, fetal bovine serum and penicillin-streptomycin were purchased from HyClone Laboratories Inc. (Logan, Utah, USA). MTT, dimethylsulfoxide, hydrogen peroxide, 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) and N-acetyl-L-cysteine (NAC) were purchased from Sigma-Aldrich (St. Louis, Mo., USA). SOD activity and GSH quantification kits were purchased from Dojindo Molecular Technologies (Kumamoto, Japan). The CAT activity kit was purchased from Molecular Probes Invitrogen (Gergy-Pintoise, France). Tetramethylethylenediamine, protein standards dual color, western view marker, protein assay, Tween-20, acrylamide, ammonium persulfate, skim milk, and ECL reagent were purchased from Bio-Rad Laboratories (Hercules, Calif., USA). A nuclear/cytosol fraction kit was purchased from BioVision (Mountain View, Calif., USA). Rabbit anti-Nrf2 was obtained from Abcam (Cambridge, UK). Anti-rabbit horseradish peroxidase secondary antibody was purchased from Assay Designs (Ann Arbor, Mich., USA). The other reagents used were of guaranteed or analytical grade.

**Preparation of the CS Extract and Standardization**

Fresh CS was obtained from a producing district (Incheon, Korea), and a voucher specimen (KHUOPS-CMH002) was deposited in the herbarium at the College of Pharmacy, Kyung Hee University (Seoul, Korea). Then, 100 g of CS leaves were ground with 1 liter of 70% ethanol in a blender for 5 min and this was stirred for 24 h at room temperature. Then, the extract was filtered, evaporated on a rotary vacuum evaporator and lyophilized (yield: 4.00%). The powder (CSE) was kept at 4 °C before use. To achieve standardization, CSE was analyzed by gas chromatography. Samples were saponified at 95 °C for 15 min with 2 ml of 0.5 N methanolic sodium hydroxide and methylated by addition of 2 ml of 14% boron trifluoride methanol. The mixture was incubated at 95 °C for 1 h and then cooled to room temperature. After vigorous shaking with 1 ml of iso-octane, the mixture was allowed to settle for 5 min, and the upper layer was transferred to a clean tube and air-dried under nitrogen. The dried sample was resuspended in 200 μl of iso-octane. Fatty acid methyl esters were analyzed using an Agilent 6890N gas chromatograph equipped with a 100 m × 0.25 mm i.d. (0.20 μm film thickness) SP-2560 capillary column (Supelco, Milan, Italy). The injector and flame ionization detector temperature was 250 °C. The oven temperature was held at 140 °C for 1 min, and thereafter increased to 190 °C at 3.5 °C/min. After 35 min, the temperature was increased at 4 °C/min to 230 °C, held at 230 °C for 10 min, and maintained at the final temperature of 240 °C for 2 min. Peaks of interest were identified by comparison with the authentic standard mixture 37-Component FAME Mix (Supelco).

**Cell Culture**

HaCaT, a human keratinocyte cell line, was kindly donated by Prof. S.Y. Kim from Kyung Hee University, Korea. Cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% heat-inactivated fetal bovine serum, 100 U/ml penicillin, and 100 μg/ml streptomycin in a condition of 95% air and 5% CO\textsubscript{2} at 37 °C. All experiments were carried out 12 h after the cells had been seeded on the 96-well plates and 24-well plates at densities of 1 × 10\textsuperscript{4} and 2 × 10\textsuperscript{4} cells/well, respectively.

**Measuring Cell Viability**

Cell viability was measured using the MTT assay. HaCaT cells were seeded on 96-well plates and treated with CSE at doses of 20–500 μg/ml for 7 h, or pretreated with CSE for 1 h and then stimulated with 1 mM H\textsubscript{2}O\textsubscript{2} for an additional 6 h. The treated cells were incubated with 1 mg/ml MTT for 2 h. The MTT medium was aspirated carefully from the wells, and the formazan dye was elut-
ed using dimethylsulfoxide. The absorbance was measured using a spectrophotometer (VersaMax microplate reader; Molecular Device, Sunnyvale, Calif., USA) at a wavelength of 570 nm and was expressed as a percent of the value for the control.

**Measuring Intracellular ROS**

Intracellular ROS generation was measured using DCFH-DA fluorescence dye. DCFH-DA enters cells passively and is converted into nonfluorescent DCFH, which reacts with ROS to form the fluorescent product DCF [18]. HaCaT cells were seeded on black 96-well plates or onto coverslips in 24-well plates and treated with CSE at doses of 100 and 500 μg/ml for 1 h. Then, they were stimulated with 1 mM H2O2 for an additional 6 h. The cells were incubated with 25 μM DCFH-DA for 30 min. The fluorescence intensity was determined at 485 nm excitation and 535 nm emission using a fluorescence microplate reader (SpectraMax Gemini EM, Molecular Device). Representative images were taken using a fluorescence microscope (Olympus Microscope System BX51; Olympus, Tokyo, Japan). For the assessment of intra- and inter-experimental variability, 3 independent experiments were carried out in triplicate.

**Measuring the SOD and CAT Activities**

The SOD and CAT activities were detected using the SOD Assay Kit-WST (Dojindo) and Amplex Red Catalase Assay Kit (Invitrogen), respectively, according to the manufacturers’ protocols. Briefly, cells were seeded on a 100-mm dish and treated with CSE at doses of 100 and 500 μg/ml for 1 h. Then, they were seeded onto a 100-mm dish and treated with CSE at doses of 100 and 500 μg/ml for 1 h. Then, they were stimulated with 1 mM H2O2 for an additional 6 h. The treated cells were lysed in 10 mM hydrochloric acid solution by freezing and thawing. Then, they were treated with 5% 5-sulfosalicylic acid. After centrifugation at 8,000 g for 30 min, the cells were incubated with 25 μM DCFH-DA for 30 min. The fluorescence intensity was determined at 485 nm excitation and 535 nm emission using a fluorescence microplate reader (SpectraMax Gemini EM, Molecular Device). Representative images were taken using a fluorescence microscope (Olympus Microscope System BX51; Olympus, Tokyo, Japan). For the assessment of intra- and inter-experimental variability, 3 independent experiments were carried out in triplicate.

**Western Blot Analysis**

The cells were pretreated with CSE (100 and 500 μg/ml) for 1 h and were stimulated with 1 mM H2O2 for an additional 6 h for detection of Nrf2. The cells were lysed with protein extraction buffer for whole protein. Nuclear and cytosolic fractions were lysed with the nuclear/cytosolic fraction kit according to the manufacturer’s protocol. Cell lysates were separated on 15% sodium dodecyl sulfate polyacrylamide gel electrophoresis, and then separated proteins were electrophoretically transferred to a membrane. The membranes were incubated with 5% skim milk in TBST (25 mM Tris-Cl, 150 mM NaCl, 0.005% Tween-20) for 45 min. Then, they were incubated with rabbit anti-Nrf2 (1:500 dilution) and mouse anti-actin (1:2,000 dilution) primary antibody overnight at 4°C, followed by incubation with horseradish peroxidase-conjugated anti-rabbit IgG (dilution 1:500). Cells were finally washed in PBS and mounted using Vectashield Mounting Medium containing 4’,6-diamidino-2-phenylindole. Confocal immunofluorescent images were captured using an LSM 700 confocal microscope (Carl Zeiss, Thornwood, N.Y., USA), and the fluorescence intensity was measured using AxioVision 4.4 (Carl Zeiss, Oberkochen, Germany). For the assessment of intra-experimental variability, 3 independent experiments were carried out in triplicate.

**Statistical Analysis**

All statistical parameters were calculated using Graphpad Prism 4.0 software. Values were expressed as the mean ± standard error of the mean (SEM). The results were analyzed by one-way analysis of variance. Differences with a p value <0.05 were considered statistically significant.

**Results and Discussion**

In this study, we evaluated the protective effects of CSE, analyzed by gas chromatography, against H2O2 stress in HaCaT cells by performing assays related with the oxidative defense system. First, to investigate the effect of CSE with regard to protecting against H2O2-induced cell toxicity, we measured cell viability using the

**Coriandrum sativum** L. Protects Human Keratinocytes from Oxidative Stress
MTT assay. NAC, a dietary supplement commonly used as an antioxidative and skin-protecting agent, was used as a positive control [20]. The results showed that treatment with CSE at 20–500 μg/ml or NAC at 2 mM alone showed no effect on the cells (fig. 1a). Treatment with 1 mM H₂O₂ for an additional 6 h significantly reduced the cell viability to 43.87% compared to the control group, while pretreatment with CSE significantly attenuated it by 52.90–84.98% of the control at 20–500 μg/ml. CSE at 500 μg/ml showed a similar effect to 2 mM of NAC.

Fig. 1. Effects of CSE on H₂O₂-induced toxicity in HaCaT cells. After the cells had become confluent, they were treated with CSE or NAC for 1 h and incubated without (a) or with 1 mM H₂O₂ (b) for a further 6 h. Cell viabilities are expressed as a percentage of the controls. Values are given as the mean ± SEM. a p < 0.001, compared to the control group; b p < 0.01, c p < 0.001, compared to the H₂O₂-alone group.

Fig. 2. Effect of CSE on the generation of ROS induced by H₂O₂ stress. The cells were treated with CSE for 1 h before stimulation with 1 mM H₂O₂. ROS generation was measured by the fluorescence intensity of DCF-DA after H₂O₂ stimulation for 30 min and 6 h (a). Representative pictures of this H₂O₂ stimulation for 30 min are shown (b–e): control group (b), H₂O₂-alone group (c), H₂O₂ + 100 μg/ml CSE group (d) and H₂O₂ + 500 μg/ml CSE group (e). Scale bar = 50 μm. Values are given as the mean ± SEM. a p < 0.001, compared to the corresponding control group; b p < 0.001, compared to the corresponding H₂O₂-alone group.
Coriandrum sativum L. Protects Human Keratinocytes from Oxidative Stress

Fig. 1. b. Then, to examine the effects of CSE on the H$_2$O$_2$-induced ROS generation using DCFH-DA. ROS, potential inducers of apoptosis, cause intracellular oxidative damage in human keratinocytes [21]. In this study, treatment with 1 mM H$_2$O$_2$ for 30 min significantly increased ROS generation up to 77-fold compared with the control group, whereas treatment with 100 or 500 μg/ml CSE significantly reduced the ROS generation induced by H$_2$O$_2$ stress by 28- and 8-fold, respectively. Also, ROS generation was measured by the fluorescence intensity of DCF-DA after H$_2$O$_2$ stimulation for 6 h (fig. 2). From these results, CSE significantly reduced the ROS generation.

Next, to investigate the effect of CSE on the ROS-reducing enzyme system, we measured the activities of SOD and CAT which repair cells by reducing the damage by superoxide, the most common free radical, in the skin [2]. In this study, H$_2$O$_2$ caused significant SOD and CAT depletion (364.28 ± 24.66 and 140.70 ± 3.45 mU/mg protein, respectively), while CSE increased the SOD and CAT activities (494.93 ± 8.24 and 176.13 ± 4.19 mU/mg protein, respectively). Then, the effect of CSE on the GSH level was investigated, because GSH plays an important role in protecting against oxidative damage by catalyzing the reduction of oxidative stress, using GSH as the reducing substrate [22]. In this study, H$_2$O$_2$ induced significant GSH depletion (1.20 ± 0.12 μM/mg protein), while CSE increased the level (2.83 ± 0.66 μM/mg protein; fig. 3).

Finally, to investigate the possible regulation of Nrf2 by CSE, we measured nuclear expression of Nrf2 by immunofluorescence. To confirm the localization of Nrf2, we labeled the nuclei with 4`,6-diamidino-2-phenylin-}

Table 1. Analysis of CSE using gas chromatography

<table>
<thead>
<tr>
<th>Component</th>
<th>Content mg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undecanoic acid (C$_{11}$:0)</td>
<td>0.19</td>
</tr>
<tr>
<td>Lauric acid (C$_{12}$:0)</td>
<td>0.32</td>
</tr>
<tr>
<td>Tridecanoic acid (C$_{13}$:0)</td>
<td>0.51</td>
</tr>
<tr>
<td>Myristic acid (C$_{14}$:0)</td>
<td>0.13</td>
</tr>
<tr>
<td>Myristoleic acid (C$_{14}$:1)</td>
<td>0.4</td>
</tr>
<tr>
<td>Pentadecanoic acid (C$_{15}$:0)</td>
<td>0.51</td>
</tr>
<tr>
<td>cis-10-Pentadecanoic acid (C$_{15}$:1)</td>
<td>0.9</td>
</tr>
<tr>
<td>Palmitic acid (C$_{16}$:0)</td>
<td>8.57</td>
</tr>
<tr>
<td>Palmitoleic acid (C$_{16}$:1)</td>
<td>0.65</td>
</tr>
<tr>
<td>Heptadecanoic acid (C$_{17}$:0)</td>
<td>0.18</td>
</tr>
<tr>
<td>Stearic acid (C$_{18}$:0)</td>
<td>0.98</td>
</tr>
<tr>
<td>Oleic acid (C$_{18}$:1, n–9c)</td>
<td>0.67</td>
</tr>
<tr>
<td>Linoleic acid (C$_{18}$:2, n–6c)</td>
<td>14.28</td>
</tr>
<tr>
<td>Linolenic acid (C$_{18}$:3, n–3)</td>
<td>17.91</td>
</tr>
<tr>
<td>cis-5,8,11,14,17-Eicosapentaenoic acid (C$_{20}$:5, n–3)</td>
<td>0.21</td>
</tr>
<tr>
<td>Behenic acid (C$_{22}$:0)</td>
<td>0.46</td>
</tr>
<tr>
<td><strong>Total content</strong></td>
<td>47.06</td>
</tr>
</tbody>
</table>
As shown in figure 4c, treatment with 1 mM H2O2 significantly decreased the Nrf2 nuclear protein level compared with the control group, whereas pretreatment with 100 or 500 μg/ml CSE significantly inhibited the decrease induced by H2O2 stress. These results confirm that CSE upregulates Nrf2 expression in the nucleus, which may have caused the observed induction of GSH expression in this study.

In this study, we demonstrated that CSE protected human keratinocytes from oxidative stress. This effect may stem primarily from its antioxidant activities such as its repression of ROS generation and up-regulation of SOD, CAT, and GSH expression (which follow the induction of Nrf2 expression). The CSE used in this study contained 47.06 mg/g fatty acids, which were found in gas chromatography analyses to be mostly of medium chain length (C16–18). The major fatty acids were linoleic acid and linolenic acid (accounting for 30.34 and 38.05% of fatty acids, respectively; table 1), which have been reported in previous studies to have antioxidative and therapeutic effects in various skin diseases [23–26]. Furthermore, they have been reported to inhibit UVB- and H2O2-induced stress in fibroblasts [27]. Thus, linoleic and linolenic acid in CSE may contribute partly to the observed protection of keratinocytes from H2O2-induced stress in this study.

In summary, CSE protected against H2O2-induced oxidative stress by inhibiting ROS production, upregulating oxidative defense enzyme expression, and increasing nuclear Nrf2 levels. These results suggest that CS may be a useful candidate for protecting skin cells from oxidative damage.

Acknowledgement

This work was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (PJ0074792011), Rural Development Administration, Republic of Korea.
References


